mirror of
https://github.com/tencentmusic/supersonic.git
synced 2026-01-24 20:41:22 +08:00
Merge 0d8ee40d6e into b9dd6bb7c5
This commit is contained in:
@@ -122,6 +122,11 @@
|
||||
<version>${mockito-inline.version}</version>
|
||||
<scope>test</scope>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>com.huaban</groupId>
|
||||
<artifactId>jieba-analysis</artifactId>
|
||||
<version>${jieba.version}</version>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
|
||||
</project>
|
||||
|
||||
@@ -1,98 +1,31 @@
|
||||
package com.tencent.supersonic.headless.chat.parser.llm;
|
||||
|
||||
import com.tencent.supersonic.headless.api.pojo.SchemaElementMatch;
|
||||
import com.tencent.supersonic.headless.api.pojo.SchemaElementType;
|
||||
import com.tencent.supersonic.headless.api.pojo.SchemaMapInfo;
|
||||
import com.tencent.supersonic.headless.api.pojo.SemanticParseInfo;
|
||||
import com.tencent.supersonic.headless.api.pojo.*;
|
||||
import com.tencent.supersonic.headless.chat.ChatQueryContext;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.apache.commons.collections.CollectionUtils;
|
||||
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.*;
|
||||
import java.util.Map.Entry;
|
||||
import java.util.Objects;
|
||||
import java.util.Set;
|
||||
|
||||
import static com.tencent.supersonic.headless.chat.parser.llm.TextSimilarityCalculation.getDataSetSimilarity;
|
||||
|
||||
/**
|
||||
* HeuristicDataSetResolver select ONE most suitable data set out of matched data sets. The
|
||||
* selection is based on similarity comparison rule and the priority is like: 1.
|
||||
* maxSimilarity(matched dataset) 2. maxSimilarity(all matched metrics) 3. totalSimilarity(all
|
||||
* matched elements)
|
||||
* HeuristicDataSetResolver select ONE most suitable data set out of data sets. The
|
||||
* selection is based on the cosine similarity directly between the question text and the dataset name
|
||||
*/
|
||||
@Slf4j
|
||||
public class HeuristicDataSetResolver implements DataSetResolver {
|
||||
|
||||
public Long resolve(ChatQueryContext chatQueryContext, Set<Long> agentDataSetIds) {
|
||||
SchemaMapInfo mapInfo = chatQueryContext.getMapInfo();
|
||||
Set<Long> matchedDataSets = mapInfo.getMatchedDataSetInfos();
|
||||
if (CollectionUtils.isNotEmpty(agentDataSetIds)) {
|
||||
matchedDataSets.retainAll(agentDataSetIds);
|
||||
String queryText = chatQueryContext.getRequest().getQueryText();
|
||||
List<SchemaElement> dataSets = chatQueryContext.getSemanticSchema().getDataSets();
|
||||
if(dataSets.size() == 1){
|
||||
return dataSets.get(0).getDataSetId();
|
||||
}
|
||||
if (matchedDataSets.size() == 1) {
|
||||
return matchedDataSets.stream().findFirst().get();
|
||||
Map<Long,Double> dataSetSimilarity = new LinkedHashMap<>();
|
||||
for (SchemaElement dataSet : dataSets){
|
||||
dataSetSimilarity.put(dataSet.getDataSetId(),getDataSetSimilarity(queryText,dataSet.getDataSetName()));
|
||||
}
|
||||
return selectDataSetByMatchSimilarity(mapInfo);
|
||||
}
|
||||
|
||||
protected Long selectDataSetByMatchSimilarity(SchemaMapInfo schemaMap) {
|
||||
Map<Long, SemanticParseInfo.DataSetMatchResult> dataSetMatchRet =
|
||||
getDataSetMatchResult(schemaMap);
|
||||
Entry<Long, SemanticParseInfo.DataSetMatchResult> selectedDataset =
|
||||
dataSetMatchRet.entrySet().stream().sorted((o1, o2) -> {
|
||||
double difference = o1.getValue().getMaxDatesetSimilarity()
|
||||
- o2.getValue().getMaxDatesetSimilarity();
|
||||
if (difference == 0) {
|
||||
difference = o1.getValue().getMaxMetricSimilarity()
|
||||
- o2.getValue().getMaxMetricSimilarity();
|
||||
if (difference == 0) {
|
||||
difference = o1.getValue().getTotalSimilarity()
|
||||
- o2.getValue().getTotalSimilarity();
|
||||
}
|
||||
if (difference == 0) {
|
||||
difference = o1.getValue().getMaxMetricUseCnt()
|
||||
- o2.getValue().getMaxMetricUseCnt();
|
||||
}
|
||||
}
|
||||
return difference >= 0 ? -1 : 1;
|
||||
}).findFirst().orElse(null);
|
||||
if (selectedDataset != null) {
|
||||
log.info("selectDataSet with multiple DataSets [{}]", selectedDataset.getKey());
|
||||
return selectedDataset.getKey();
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
protected Map<Long, SemanticParseInfo.DataSetMatchResult> getDataSetMatchResult(
|
||||
SchemaMapInfo schemaMap) {
|
||||
Map<Long, SemanticParseInfo.DataSetMatchResult> dateSetMatchRet = new HashMap<>();
|
||||
for (Entry<Long, List<SchemaElementMatch>> entry : schemaMap.getDataSetElementMatches()
|
||||
.entrySet()) {
|
||||
double maxMetricSimilarity = 0;
|
||||
double maxDatasetSimilarity = 0;
|
||||
double totalSimilarity = 0;
|
||||
long maxMetricUseCnt = 0L;
|
||||
for (SchemaElementMatch match : entry.getValue()) {
|
||||
if (SchemaElementType.DATASET.equals(match.getElement().getType())) {
|
||||
maxDatasetSimilarity = Math.max(maxDatasetSimilarity, match.getSimilarity());
|
||||
}
|
||||
if (SchemaElementType.METRIC.equals(match.getElement().getType())) {
|
||||
maxMetricSimilarity = Math.max(maxMetricSimilarity, match.getSimilarity());
|
||||
if (Objects.nonNull(match.getElement().getUseCnt())) {
|
||||
maxMetricUseCnt = Math.max(maxMetricUseCnt, match.getElement().getUseCnt());
|
||||
}
|
||||
}
|
||||
totalSimilarity += match.getSimilarity();
|
||||
}
|
||||
dateSetMatchRet.put(entry.getKey(),
|
||||
SemanticParseInfo.DataSetMatchResult.builder()
|
||||
.maxMetricSimilarity(maxMetricSimilarity)
|
||||
.maxDatesetSimilarity(maxDatasetSimilarity)
|
||||
.totalSimilarity(totalSimilarity).build());
|
||||
}
|
||||
|
||||
return dateSetMatchRet;
|
||||
return dataSetSimilarity.entrySet().stream().max(Map.Entry.comparingByValue()).get().getKey();
|
||||
}
|
||||
}
|
||||
|
||||
@@ -0,0 +1,52 @@
|
||||
package com.tencent.supersonic.headless.chat.parser.llm;
|
||||
|
||||
import com.huaban.analysis.jieba.JiebaSegmenter;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
@Slf4j
|
||||
public class TextSimilarityCalculation {
|
||||
// 生成词频向量
|
||||
private static double[] createVector(List<String> words, List<String> vocabulary) {
|
||||
double[] vector = new double[vocabulary.size()];
|
||||
Map<String, Integer> wordFreq = new HashMap<>();
|
||||
for (String word : words) {
|
||||
wordFreq.put(word, wordFreq.getOrDefault(word, 0) + 1);
|
||||
}
|
||||
for (int i = 0; i < vocabulary.size(); i++) {
|
||||
vector[i] = wordFreq.getOrDefault(vocabulary.get(i), 0);
|
||||
}
|
||||
return vector;
|
||||
}
|
||||
// 余弦相似度计算公式
|
||||
private static double cosineSimilarity(double[] vecA, double[] vecB) {
|
||||
double dotProduct = 0.0;
|
||||
double normA = 0.0;
|
||||
double normB = 0.0;
|
||||
for (int i = 0; i < vecA.length; i++) {
|
||||
dotProduct += vecA[i] * vecB[i];
|
||||
normA += Math.pow(vecA[i], 2);
|
||||
normB += Math.pow(vecB[i], 2);
|
||||
}
|
||||
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
|
||||
}
|
||||
|
||||
public static double getDataSetSimilarity(String queryText, String datasetName){
|
||||
if(queryText ==null || datasetName == null ){ return 0.0;}
|
||||
JiebaSegmenter segmenter = new JiebaSegmenter();
|
||||
|
||||
// 1.分词
|
||||
List<String> words1 = segmenter.sentenceProcess(queryText);
|
||||
List<String> words2 = segmenter.sentenceProcess(datasetName);
|
||||
// 2. 构建词汇表并生成向量
|
||||
List<String> vocabulary = new ArrayList<>(new HashSet<>(words1));
|
||||
vocabulary.addAll(new HashSet<>(words2));
|
||||
|
||||
double[] vector1 = createVector(words1, vocabulary);
|
||||
double[] vector2 = createVector(words2, vocabulary);
|
||||
// 计算相似度(示例使用简单重叠度计算)
|
||||
double similarity = cosineSimilarity(vector1, vector2);
|
||||
return similarity;
|
||||
}
|
||||
}
|
||||
6
pom.xml
6
pom.xml
@@ -82,6 +82,7 @@
|
||||
<stax2.version>4.2.2</stax2.version>
|
||||
<aws-java-sdk.version>1.12.780</aws-java-sdk.version>
|
||||
<jgrapht.version>1.5.2</jgrapht.version>
|
||||
<jieba.version>1.0.2</jieba.version>
|
||||
</properties>
|
||||
|
||||
<dependencyManagement>
|
||||
@@ -216,6 +217,11 @@
|
||||
<artifactId>jgrapht-core</artifactId>
|
||||
<version>${jgrapht.version}</version>
|
||||
</dependency>
|
||||
<dependency>
|
||||
<groupId>com.huaban</groupId>
|
||||
<artifactId>jieba-analysis</artifactId>
|
||||
<version>${jieba.version}</version>
|
||||
</dependency>
|
||||
</dependencies>
|
||||
</dependencyManagement>
|
||||
|
||||
|
||||
Reference in New Issue
Block a user