mirror of
https://github.com/tencentmusic/supersonic.git
synced 2025-12-10 11:07:06 +00:00
(improvement)(text2sql) add text2sql feature that only call LLM once, and add correponding configs and docs. (#102)
Co-authored-by: shaoweigong <shaoweigong@tencent.com>
This commit is contained in:
@@ -15,6 +15,7 @@ CHROMA_DB_PERSIST_DIR = 'chm_db'
|
||||
PRESET_QUERY_COLLECTION_NAME = "preset_query_collection"
|
||||
TEXT2DSL_COLLECTION_NAME = "text2dsl_collection"
|
||||
TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM = 15
|
||||
TEXT2DSL_IS_SHORTCUT = False
|
||||
|
||||
CHROMA_DB_PERSIST_PATH = os.path.join(PROJECT_DIR_PATH, CHROMA_DB_PERSIST_DIR)
|
||||
|
||||
|
||||
@@ -22,10 +22,8 @@ from util.text2vec import Text2VecEmbeddingFunction, hg_embedding
|
||||
from util.chromadb_instance import client as chromadb_client, empty_chroma_collection_2
|
||||
from run_config import TEXT2DSL_COLLECTION_NAME, TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
|
||||
|
||||
|
||||
def reload_sql_example_collection(vectorstore:Chroma,
|
||||
sql_examplars:List[Mapping[str, str]],
|
||||
schema_linking_example_selector:SemanticSimilarityExampleSelector,
|
||||
sql_example_selector:SemanticSimilarityExampleSelector,
|
||||
example_nums:int
|
||||
):
|
||||
@@ -35,20 +33,16 @@ def reload_sql_example_collection(vectorstore:Chroma,
|
||||
|
||||
print("emptied sql_examples_collection size:", vectorstore._collection.count())
|
||||
|
||||
schema_linking_example_selector = SemanticSimilarityExampleSelector(vectorstore=sql_examples_vectorstore, k=example_nums,
|
||||
input_keys=["question"],
|
||||
example_keys=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links"])
|
||||
|
||||
sql_example_selector = SemanticSimilarityExampleSelector(vectorstore=sql_examples_vectorstore, k=example_nums,
|
||||
input_keys=["question"],
|
||||
example_keys=["question", "current_date", "table_name", "schema_links", "sql"])
|
||||
input_keys=["question"],
|
||||
example_keys=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links", "current_date", "sql"])
|
||||
|
||||
for example in sql_examplars:
|
||||
schema_linking_example_selector.add_example(example)
|
||||
sql_example_selector.add_example(example)
|
||||
|
||||
print("reloaded sql_examples_collection size:", vectorstore._collection.count())
|
||||
|
||||
return vectorstore, schema_linking_example_selector, sql_example_selector
|
||||
return vectorstore, sql_example_selector
|
||||
|
||||
|
||||
sql_examples_vectorstore = Chroma(collection_name=TEXT2DSL_COLLECTION_NAME,
|
||||
@@ -57,22 +51,14 @@ sql_examples_vectorstore = Chroma(collection_name=TEXT2DSL_COLLECTION_NAME,
|
||||
|
||||
example_nums = TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
|
||||
|
||||
schema_linking_example_selector = SemanticSimilarityExampleSelector(vectorstore=sql_examples_vectorstore, k=example_nums,
|
||||
input_keys=["question"],
|
||||
example_keys=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links"])
|
||||
|
||||
sql_example_selector = SemanticSimilarityExampleSelector(vectorstore=sql_examples_vectorstore, k=example_nums,
|
||||
input_keys=["question"],
|
||||
example_keys=["question", "current_date", "table_name", "schema_links", "sql"])
|
||||
input_keys=["question"],
|
||||
example_keys=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links", "current_date", "sql"])
|
||||
|
||||
if sql_examples_vectorstore._collection.count() > 0:
|
||||
print("examples already in sql_vectorstore")
|
||||
print("init sql_vectorstore size:", sql_examples_vectorstore._collection.count())
|
||||
if sql_examples_vectorstore._collection.count() < len(sql_examplars):
|
||||
print("sql_examplars size:", len(sql_examplars))
|
||||
sql_examples_vectorstore, schema_linking_example_selector, sql_example_selector = reload_sql_example_collection(sql_examples_vectorstore, sql_examplars, schema_linking_example_selector, sql_example_selector, example_nums)
|
||||
print("added sql_vectorstore size:", sql_examples_vectorstore._collection.count())
|
||||
else:
|
||||
sql_examples_vectorstore, schema_linking_example_selector, sql_example_selector = reload_sql_example_collection(sql_examples_vectorstore, sql_examplars, schema_linking_example_selector, sql_example_selector, example_nums)
|
||||
print("added sql_vectorstore size:", sql_examples_vectorstore._collection.count())
|
||||
|
||||
print("sql_examplars size:", len(sql_examplars))
|
||||
sql_examples_vectorstore, sql_example_selector = reload_sql_example_collection(sql_examples_vectorstore, sql_examplars, sql_example_selector, example_nums)
|
||||
print("added sql_vectorstore size:", sql_examples_vectorstore._collection.count())
|
||||
|
||||
@@ -8,24 +8,22 @@ import json
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
from run_config import TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
|
||||
from run_config import TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM, TEXT2DSL_IS_SHORTCUT
|
||||
from few_shot_example.sql_exampler import examplars as sql_examplars
|
||||
from run_config import LLMPARSER_HOST
|
||||
from run_config import LLMPARSER_PORT
|
||||
from run_config import LLMPARSER_HOST, LLMPARSER_PORT
|
||||
|
||||
|
||||
def text2dsl_setting_update(llm_parser_host:str, llm_parser_port:str,
|
||||
sql_examplars:List[Mapping[str, str]], example_nums:int):
|
||||
sql_examplars:List[Mapping[str, str]], example_nums:int, is_shortcut:bool):
|
||||
|
||||
url = f"http://{llm_parser_host}:{llm_parser_port}/query2sql_setting_update/"
|
||||
print("url: ", url)
|
||||
payload = {"sqlExamplars":sql_examplars, "exampleNums":example_nums}
|
||||
payload = {"sqlExamplars":sql_examplars, "exampleNums":example_nums, "isShortcut":is_shortcut}
|
||||
headers = {'content-type': 'application/json'}
|
||||
response = requests.post(url, data=json.dumps(payload), headers=headers)
|
||||
print(response.text)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
arguments = sys.argv
|
||||
text2dsl_setting_update(LLMPARSER_HOST, LLMPARSER_PORT,
|
||||
sql_examplars, TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM)
|
||||
sql_examplars, TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM, TEXT2DSL_IS_SHORTCUT)
|
||||
|
||||
@@ -10,4 +10,36 @@ def schema_link_parse(schema_link_output):
|
||||
print(e)
|
||||
schema_link_output = None
|
||||
|
||||
return schema_link_output
|
||||
return schema_link_output
|
||||
|
||||
def combo_schema_link_parse(schema_linking_sql_combo_output: str):
|
||||
try:
|
||||
schema_linking_sql_combo_output = schema_linking_sql_combo_output.strip()
|
||||
pattern = r'Schema_links:(\[.*?\])'
|
||||
schema_links_match = re.search(pattern, schema_linking_sql_combo_output)
|
||||
|
||||
if schema_links_match:
|
||||
schema_links = schema_links_match.group(1)
|
||||
else:
|
||||
schema_links = None
|
||||
except Exception as e:
|
||||
print(e)
|
||||
schema_links = None
|
||||
|
||||
return schema_links
|
||||
|
||||
def combo_sql_parse(schema_linking_sql_combo_output: str):
|
||||
try:
|
||||
schema_linking_sql_combo_output = schema_linking_sql_combo_output.strip()
|
||||
pattern = r'SQL:(.*)'
|
||||
sql_match = re.search(pattern, schema_linking_sql_combo_output)
|
||||
|
||||
if sql_match:
|
||||
sql = sql_match.group(1)
|
||||
else:
|
||||
sql = None
|
||||
except Exception as e:
|
||||
print(e)
|
||||
sql = None
|
||||
|
||||
return sql
|
||||
|
||||
@@ -73,3 +73,38 @@ def sql_exampler(user_query: str,
|
||||
schema_links=schema_link_str)
|
||||
|
||||
return sql_example_prompt
|
||||
|
||||
|
||||
def schema_linking_sql_combo_examplar(user_query: str,
|
||||
domain_name: str,
|
||||
data_date : str,
|
||||
fields_list: List[str],
|
||||
prior_schema_links: Mapping[str,str],
|
||||
example_selector: SemanticSimilarityExampleSelector) -> str:
|
||||
|
||||
prior_schema_links_str = '['+ ','.join(["""'{}'->{}""".format(k,v) for k,v in prior_schema_links.items()]) + ']'
|
||||
|
||||
example_prompt_template = PromptTemplate(input_variables=["table_name", "fields_list", "prior_schema_links", "current_date", "question", "analysis", "schema_links", "sql"],
|
||||
template="Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n问题:{question}\n分析:{analysis} 所以Schema_links是:\nSchema_links:{schema_links}\nSQL:{sql}")
|
||||
|
||||
instruction = "# 根据数据库的表结构,参考先验信息,找出为每个问题生成SQL查询语句的schema_links,再根据schema_links为每个问题生成SQL查询语句"
|
||||
|
||||
schema_linking_sql_combo_prompt = "Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n问题:{question}\n分析: 让我们一步一步地思考。"
|
||||
|
||||
schema_linking_sql_combo_example_prompt_template = FewShotPromptTemplate(
|
||||
example_selector=example_selector,
|
||||
example_prompt=example_prompt_template,
|
||||
example_separator="\n\n",
|
||||
prefix=instruction,
|
||||
input_variables=["table_name", "fields_list", "prior_schema_links", "current_date", "question"],
|
||||
suffix=schema_linking_sql_combo_prompt
|
||||
)
|
||||
|
||||
schema_linking_sql_combo_example_prompt = schema_linking_sql_combo_example_prompt_template.format(table_name=domain_name,
|
||||
fields_list=fields_list,
|
||||
prior_schema_links=prior_schema_links_str,
|
||||
current_date=data_date,
|
||||
question=user_query)
|
||||
return schema_linking_sql_combo_example_prompt
|
||||
|
||||
|
||||
|
||||
@@ -7,32 +7,37 @@ import sys
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
from sql.prompt_maker import schema_linking_exampler, sql_exampler
|
||||
from sql.constructor import schema_linking_example_selector, sql_example_selector,sql_examples_vectorstore, reload_sql_example_collection
|
||||
from sql.output_parser import schema_link_parse
|
||||
from sql.prompt_maker import schema_linking_exampler, sql_exampler, schema_linking_sql_combo_examplar
|
||||
from sql.constructor import sql_examples_vectorstore, sql_example_selector, reload_sql_example_collection
|
||||
from sql.output_parser import schema_link_parse, combo_schema_link_parse, combo_sql_parse
|
||||
|
||||
from util.llm_instance import llm
|
||||
|
||||
from run_config import TEXT2DSL_IS_SHORTCUT
|
||||
|
||||
class Text2DSLAgent(object):
|
||||
def __init__(self):
|
||||
self.schema_linking_exampler = schema_linking_exampler
|
||||
self.sql_exampler = sql_exampler
|
||||
|
||||
self.schema_linking_sql_combo_exampler = schema_linking_sql_combo_examplar
|
||||
|
||||
self.sql_examples_vectorstore = sql_examples_vectorstore
|
||||
self.schema_linking_example_selector = schema_linking_example_selector
|
||||
self.sql_example_selector = sql_example_selector
|
||||
|
||||
self.schema_link_parse = schema_link_parse
|
||||
self.combo_schema_link_parse = combo_schema_link_parse
|
||||
self.combo_sql_parse = combo_sql_parse
|
||||
|
||||
self.llm = llm
|
||||
|
||||
def update_examples(self, sql_examplars, example_nums):
|
||||
self.sql_examples_vectorstore, self.schema_linking_example_selector, self.sql_example_selector = reload_sql_example_collection(self.sql_examples_vectorstore,
|
||||
sql_examplars,
|
||||
self.schema_linking_example_selector,
|
||||
self.sql_example_selector,
|
||||
example_nums)
|
||||
self.is_shortcut = TEXT2DSL_IS_SHORTCUT
|
||||
|
||||
def update_examples(self, sql_examples, example_nums, is_shortcut):
|
||||
self.sql_examples_vectorstore, self.sql_example_selector = reload_sql_example_collection(self.sql_examples_vectorstore,
|
||||
sql_examples,
|
||||
self.sql_example_selector,
|
||||
example_nums)
|
||||
self.is_shortcut = is_shortcut
|
||||
|
||||
def query2sql(self, query_text: str,
|
||||
schema : Union[dict, None] = None,
|
||||
@@ -53,14 +58,14 @@ class Text2DSLAgent(object):
|
||||
model_name = schema['modelName']
|
||||
fields_list = schema['fieldNameList']
|
||||
|
||||
schema_linking_prompt = self.schema_linking_exampler(query_text, model_name, fields_list, prior_schema_links, self.schema_linking_example_selector)
|
||||
schema_linking_prompt = self.schema_linking_exampler(query_text, model_name, fields_list, prior_schema_links, self.sql_example_selector)
|
||||
print("schema_linking_prompt->", schema_linking_prompt)
|
||||
schema_link_output = self.llm(schema_linking_prompt)
|
||||
schema_link_str = self.schema_link_parse(schema_link_output)
|
||||
|
||||
sql_prompt = self.sql_exampler(query_text, model_name, schema_link_str, current_date, self.sql_example_selector)
|
||||
print("sql_prompt->", sql_prompt)
|
||||
sql_output = llm(sql_prompt)
|
||||
sql_output = self.llm(sql_prompt)
|
||||
|
||||
resp = dict()
|
||||
resp['query'] = query_text
|
||||
@@ -69,7 +74,7 @@ class Text2DSLAgent(object):
|
||||
resp['priorSchemaLinking'] = linking
|
||||
resp['dataDate'] = current_date
|
||||
|
||||
resp['schemaLinkingOutput'] = schema_link_output
|
||||
resp['analysisOutput'] = schema_link_output
|
||||
resp['schemaLinkStr'] = schema_link_str
|
||||
|
||||
resp['sqlOutput'] = sql_output
|
||||
@@ -78,5 +83,57 @@ class Text2DSLAgent(object):
|
||||
|
||||
return resp
|
||||
|
||||
def query2sqlcombo(self, query_text: str,
|
||||
schema : Union[dict, None] = None,
|
||||
current_date: str = None,
|
||||
linking: Union[List[Mapping[str, str]], None] = None
|
||||
):
|
||||
|
||||
print("query_text: ", query_text)
|
||||
print("schema: ", schema)
|
||||
print("current_date: ", current_date)
|
||||
print("prior_schema_links: ", linking)
|
||||
|
||||
if linking is not None:
|
||||
prior_schema_links = {item['fieldValue']:item['fieldName'] for item in linking}
|
||||
else:
|
||||
prior_schema_links = {}
|
||||
|
||||
model_name = schema['modelName']
|
||||
fields_list = schema['fieldNameList']
|
||||
|
||||
schema_linking_sql_combo_prompt = self.schema_linking_sql_combo_exampler(query_text, model_name, current_date, fields_list,
|
||||
prior_schema_links, self.sql_example_selector)
|
||||
print("schema_linking_sql_combo_prompt->", schema_linking_sql_combo_prompt)
|
||||
schema_linking_sql_combo_output = self.llm(schema_linking_sql_combo_prompt)
|
||||
|
||||
schema_linking_str = self.combo_schema_link_parse(schema_linking_sql_combo_output)
|
||||
sql_str = self.combo_sql_parse(schema_linking_sql_combo_output)
|
||||
|
||||
resp = dict()
|
||||
resp['query'] = query_text
|
||||
resp['model'] = model_name
|
||||
resp['fields'] = fields_list
|
||||
resp['priorSchemaLinking'] = prior_schema_links
|
||||
resp['dataDate'] = current_date
|
||||
|
||||
resp['analysisOutput'] = schema_linking_sql_combo_output
|
||||
resp['schemaLinkStr'] = schema_linking_str
|
||||
resp['sqlOutput'] = sql_str
|
||||
|
||||
print("resp: ", resp)
|
||||
|
||||
return resp
|
||||
|
||||
def query2sql_run(self, query_text: str,
|
||||
schema : Union[dict, None] = None,
|
||||
current_date: str = None,
|
||||
linking: Union[List[Mapping[str, str]], None] = None):
|
||||
|
||||
if self.is_shortcut:
|
||||
return self.query2sqlcombo(query_text, schema, current_date, linking)
|
||||
else:
|
||||
return self.query2sql(query_text, schema, current_date, linking)
|
||||
|
||||
text2sql_agent = Text2DSLAgent()
|
||||
|
||||
|
||||
@@ -51,7 +51,7 @@ async def din_query2sql(query_body: Mapping[str, Any]):
|
||||
else:
|
||||
linking = query_body['linking']
|
||||
|
||||
resp = text2sql_agent.query2sql(query_text=query_text,
|
||||
resp = text2sql_agent.query2sql_run(query_text=query_text,
|
||||
schema=schema, current_date=current_date, linking=linking)
|
||||
|
||||
return resp
|
||||
@@ -70,7 +70,12 @@ async def query2sql_setting_update(query_body: Mapping[str, Any]):
|
||||
else:
|
||||
example_nums = query_body['exampleNums']
|
||||
|
||||
text2sql_agent.update_examples(sql_examplars=sql_examplars, example_nums=example_nums)
|
||||
if 'isShortcut' not in query_body:
|
||||
raise HTTPException(status_code=400, detail="isShortcut is not in query_body")
|
||||
else:
|
||||
is_shortcut = query_body['isShortcut']
|
||||
|
||||
text2sql_agent.update_examples(sql_examples=sql_examplars, example_nums=example_nums, is_shortcut=is_shortcut)
|
||||
|
||||
return "success"
|
||||
|
||||
|
||||
Binary file not shown.
|
Before Width: | Height: | Size: 123 KiB After Width: | Height: | Size: 107 KiB |
@@ -5,21 +5,25 @@ text2sql的功能实现,高度依赖对LLM的应用。通过LLM生成SQL的过
|
||||
|
||||
### **配置方式**
|
||||
1. 样本池的配置。
|
||||
- supersonic/chat/core/src/main/python/llm/few_shot_example/sql_exampler.py为样本池配置文件。用户可以以已有的样本作为参考,配置更贴近自身业务需求的样本,用于更好的引导LLM生成SQL。
|
||||
- supersonic/chat/core/src/main/python/few_shot_example/sql_exampler.py 为样本池配置文件。用户可以以已有的样本作为参考,配置更贴近自身业务需求的样本,用于更好的引导LLM生成SQL。
|
||||
2. 样本数量的配置。
|
||||
- 在supersonic/chat/core/src/main/python/llm/run_config.py 中通过 TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM 变量进行配置。
|
||||
- 在 supersonic/chat/core/src/main/python/run_config.py 中通过 TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM 变量进行配置。
|
||||
- 默认值为15,为项目在内部实践后较优的经验值。样本少太少,对导致LLM在生成SQL的过程中缺少引导和示范,生成的SQL会更不稳定;样本太多,会增加生成SQL需要的时间和LLM的token消耗(或超过LLM的token上限)。
|
||||
- <div align="left" >
|
||||
3. SQL生成方式的配置
|
||||
- 在 supersonic/chat/core/src/main/python/run_config.py 中通过 TEXT2DSL_IS_SHORTCUT 变量进行配置。
|
||||
- 默认值为False;当为False时,会调用2次LLM生成SQL;当为True时,会只调用1次LLM生成SQL。相较于2次LLM调用生成的SQL,耗时会减少30-40%,token的消耗量会减少30%左右,但生成的SQL正确率会有所下降。
|
||||
<div align="left" >
|
||||
<img src=../images/text2sql_config.png width="70%"/>
|
||||
<p>图1-1 样本数量的配置文件</p>
|
||||
<p>图1-1 配置文件</p>
|
||||
</div>
|
||||
|
||||
3. 运行中更新配置的脚本。
|
||||
- 如果在启动项目后,用户需要对text2sql功能的相关配置进行调试,可以在修改相关配置文件后,通过脚本 supersonic/chat/core/src/main/python/bin/text2sql_resetting.sh 在项目运行中让配置生效。
|
||||
|
||||
### **运行中更新配置的脚本**
|
||||
1. 如果在启动项目后,用户需要对text2sql功能的相关配置进行调试,可以在修改相关配置文件后,通过以下2种方式让配置在项目运行中让配置生效。
|
||||
- 执行 supersonic-daemon.sh reload llmparser
|
||||
- 执行 python examples_reload_run.py
|
||||
### **FAQ**
|
||||
1. 生成一个SQL需要消耗的的LLM token数量太多了,按照openAI对token的收费标准,生成一个SQL太贵了,可以少用一些token吗?
|
||||
- 可以。 用户可以根据自身需求,如配置方式1.中所示,修改样本池中的样本,选用一些更加简短的样本。如配置方式2.中所示,减少使用的样本数量。
|
||||
- 可以。 用户可以根据自身需求,如配置方式1.中所示,修改样本池中的样本,选用一些更加简短的样本。如配置方式2.中所示,减少使用的样本数量。配置方式3.中所示,只调用1次LLM生成SQL。
|
||||
- 需要注意,样本和样本数量的选择对生成SQL的质量有很大的影响。过于激进的降低输入的token数量可能会降低生成SQL的质量。需要用户根据自身业务特点实测后进行平衡。
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user