(feature)(headless) 新增余弦相似度计算工具类

新增余弦相似度计算方法,使用jieba分词,并计算余弦相似度
This commit is contained in:
QJ_wonder
2025-05-21 11:19:32 +08:00
committed by GitHub
parent 6dda8eed45
commit c27f1d13be

View File

@@ -0,0 +1,52 @@
package com.tencent.supersonic.headless.chat.parser.llm;
import com.huaban.analysis.jieba.JiebaSegmenter;
import lombok.extern.slf4j.Slf4j;
import java.util.*;
@Slf4j
public class TextSimilarityCalculation {
// 生成词频向量
private static double[] createVector(List<String> words, List<String> vocabulary) {
double[] vector = new double[vocabulary.size()];
Map<String, Integer> wordFreq = new HashMap<>();
for (String word : words) {
wordFreq.put(word, wordFreq.getOrDefault(word, 0) + 1);
}
for (int i = 0; i < vocabulary.size(); i++) {
vector[i] = wordFreq.getOrDefault(vocabulary.get(i), 0);
}
return vector;
}
// 余弦相似度计算公式
private static double cosineSimilarity(double[] vecA, double[] vecB) {
double dotProduct = 0.0;
double normA = 0.0;
double normB = 0.0;
for (int i = 0; i < vecA.length; i++) {
dotProduct += vecA[i] * vecB[i];
normA += Math.pow(vecA[i], 2);
normB += Math.pow(vecB[i], 2);
}
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
}
public static double getDataSetSimilarity(String queryText, String datasetName){
if(queryText ==null || datasetName == null ){ return 0.0;}
JiebaSegmenter segmenter = new JiebaSegmenter();
// 1.分词
List<String> words1 = segmenter.sentenceProcess(queryText);
List<String> words2 = segmenter.sentenceProcess(datasetName);
// 2. 构建词汇表并生成向量
List<String> vocabulary = new ArrayList<>(new HashSet<>(words1));
vocabulary.addAll(new HashSet<>(words2));
double[] vector1 = createVector(words1, vocabulary);
double[] vector2 = createVector(words2, vocabulary);
// 计算相似度(示例使用简单重叠度计算)
double similarity = cosineSimilarity(vector1, vector2);
return similarity;
}
}