mirror of
https://github.com/tencentmusic/supersonic.git
synced 2026-01-24 20:41:22 +08:00
(feature)(headless) 新增余弦相似度计算工具类
新增余弦相似度计算方法,使用jieba分词,并计算余弦相似度
This commit is contained in:
@@ -0,0 +1,52 @@
|
||||
package com.tencent.supersonic.headless.chat.parser.llm;
|
||||
|
||||
import com.huaban.analysis.jieba.JiebaSegmenter;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
|
||||
import java.util.*;
|
||||
|
||||
@Slf4j
|
||||
public class TextSimilarityCalculation {
|
||||
// 生成词频向量
|
||||
private static double[] createVector(List<String> words, List<String> vocabulary) {
|
||||
double[] vector = new double[vocabulary.size()];
|
||||
Map<String, Integer> wordFreq = new HashMap<>();
|
||||
for (String word : words) {
|
||||
wordFreq.put(word, wordFreq.getOrDefault(word, 0) + 1);
|
||||
}
|
||||
for (int i = 0; i < vocabulary.size(); i++) {
|
||||
vector[i] = wordFreq.getOrDefault(vocabulary.get(i), 0);
|
||||
}
|
||||
return vector;
|
||||
}
|
||||
// 余弦相似度计算公式
|
||||
private static double cosineSimilarity(double[] vecA, double[] vecB) {
|
||||
double dotProduct = 0.0;
|
||||
double normA = 0.0;
|
||||
double normB = 0.0;
|
||||
for (int i = 0; i < vecA.length; i++) {
|
||||
dotProduct += vecA[i] * vecB[i];
|
||||
normA += Math.pow(vecA[i], 2);
|
||||
normB += Math.pow(vecB[i], 2);
|
||||
}
|
||||
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
|
||||
}
|
||||
|
||||
public static double getDataSetSimilarity(String queryText, String datasetName){
|
||||
if(queryText ==null || datasetName == null ){ return 0.0;}
|
||||
JiebaSegmenter segmenter = new JiebaSegmenter();
|
||||
|
||||
// 1.分词
|
||||
List<String> words1 = segmenter.sentenceProcess(queryText);
|
||||
List<String> words2 = segmenter.sentenceProcess(datasetName);
|
||||
// 2. 构建词汇表并生成向量
|
||||
List<String> vocabulary = new ArrayList<>(new HashSet<>(words1));
|
||||
vocabulary.addAll(new HashSet<>(words2));
|
||||
|
||||
double[] vector1 = createVector(words1, vocabulary);
|
||||
double[] vector2 = createVector(words2, vocabulary);
|
||||
// 计算相似度(示例使用简单重叠度计算)
|
||||
double similarity = cosineSimilarity(vector1, vector2);
|
||||
return similarity;
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user