mirror of
https://github.com/tencentmusic/supersonic.git
synced 2025-12-10 11:07:06 +00:00
[improvement](chat) Support new four methods of generating SQL using SqlGeneration large models. (#519)
This commit is contained in:
@@ -63,10 +63,10 @@ public class OptimizationConfig {
|
||||
@Value("${text2sql.example.num:10}")
|
||||
private int text2sqlExampleNum;
|
||||
|
||||
@Value("${text2sql.fewShots.num:10}")
|
||||
@Value("${text2sql.fewShots.num:5}")
|
||||
private int text2sqlFewShotsNum;
|
||||
|
||||
@Value("${text2sql.self.consistency.num:5}")
|
||||
@Value("${text2sql.self.consistency.num:2}")
|
||||
private int text2sqlSelfConsistencyNum;
|
||||
|
||||
@Value("${text2sql.collection.name:text2dsl_agent_collection}")
|
||||
|
||||
@@ -4,13 +4,14 @@ import com.tencent.supersonic.chat.api.pojo.QueryContext;
|
||||
import com.tencent.supersonic.chat.parser.plugin.function.FunctionPromptGenerator;
|
||||
import com.tencent.supersonic.chat.parser.plugin.function.FunctionReq;
|
||||
import com.tencent.supersonic.chat.parser.plugin.function.FunctionResp;
|
||||
import com.tencent.supersonic.chat.parser.sql.llm.OutputFormat;
|
||||
import com.tencent.supersonic.chat.parser.sql.llm.SqlGeneration;
|
||||
import com.tencent.supersonic.chat.parser.sql.llm.SqlGenerationFactory;
|
||||
import com.tencent.supersonic.chat.parser.sql.llm.OutputFormat;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMResp;
|
||||
import com.tencent.supersonic.common.util.ContextUtils;
|
||||
import dev.langchain4j.model.chat.ChatLanguageModel;
|
||||
import java.util.Map;
|
||||
import java.util.Objects;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.springframework.stereotype.Component;
|
||||
@@ -36,12 +37,12 @@ public class JavaLLMProxy implements LLMProxy {
|
||||
|
||||
SqlGeneration sqlGeneration = SqlGenerationFactory.get(llmReq.getSqlGenerationMode());
|
||||
String modelName = llmReq.getSchema().getModelName();
|
||||
String sql = sqlGeneration.generation(llmReq, modelClusterKey);
|
||||
Map<String, Double> sqlWeight = sqlGeneration.generation(llmReq, modelClusterKey);
|
||||
|
||||
LLMResp result = new LLMResp();
|
||||
result.setQuery(llmReq.getQueryText());
|
||||
result.setModelName(modelName);
|
||||
result.setSqlOutput(sql);
|
||||
result.setSqlWeight(sqlWeight);
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
@@ -0,0 +1,76 @@
|
||||
package com.tencent.supersonic.chat.parser.sql.llm;
|
||||
|
||||
|
||||
import com.tencent.supersonic.chat.config.OptimizationConfig;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq.SqlGenerationMode;
|
||||
import com.tencent.supersonic.common.util.JsonUtil;
|
||||
import dev.langchain4j.data.message.AiMessage;
|
||||
import dev.langchain4j.model.chat.ChatLanguageModel;
|
||||
import dev.langchain4j.model.input.Prompt;
|
||||
import dev.langchain4j.model.input.PromptTemplate;
|
||||
import dev.langchain4j.model.output.Response;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.concurrent.CopyOnWriteArrayList;
|
||||
import java.util.stream.Collectors;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.apache.commons.lang3.tuple.Pair;
|
||||
import org.springframework.beans.factory.InitializingBean;
|
||||
import org.springframework.beans.factory.annotation.Autowired;
|
||||
import org.springframework.stereotype.Service;
|
||||
|
||||
@Service
|
||||
@Slf4j
|
||||
public class OnePassSCSqlGeneration implements SqlGeneration, InitializingBean {
|
||||
|
||||
@Autowired
|
||||
private ChatLanguageModel chatLanguageModel;
|
||||
|
||||
@Autowired
|
||||
private SqlExampleLoader sqlExampleLoader;
|
||||
|
||||
@Autowired
|
||||
private OptimizationConfig optimizationConfig;
|
||||
|
||||
@Autowired
|
||||
private SqlPromptGenerator sqlPromptGenerator;
|
||||
|
||||
@Override
|
||||
public Map<String, Double> generation(LLMReq llmReq, String modelClusterKey) {
|
||||
//1.retriever sqlExamples and generate exampleListPool
|
||||
List<Map<String, String>> sqlExamples = sqlExampleLoader.retrieverSqlExamples(llmReq.getQueryText(),
|
||||
optimizationConfig.getText2sqlCollectionName(), optimizationConfig.getText2sqlExampleNum());
|
||||
|
||||
List<List<Map<String, String>>> exampleListPool = sqlPromptGenerator.getExampleCombos(sqlExamples,
|
||||
optimizationConfig.getText2sqlFewShotsNum(), optimizationConfig.getText2sqlSelfConsistencyNum());
|
||||
|
||||
//2.generator linking and sql prompt by sqlExamples,and parallel generate response.
|
||||
List<String> linkingSqlPromptPool = sqlPromptGenerator.generatePromptPool(llmReq, exampleListPool, true);
|
||||
List<String> llmResults = new CopyOnWriteArrayList<>();
|
||||
linkingSqlPromptPool.parallelStream().forEach(linkingSqlPrompt -> {
|
||||
Prompt prompt = PromptTemplate.from(JsonUtil.toString(linkingSqlPrompt))
|
||||
.apply(new HashMap<>());
|
||||
Response<AiMessage> response = chatLanguageModel.generate(prompt.toSystemMessage());
|
||||
llmResults.add(response.content().text());
|
||||
}
|
||||
);
|
||||
//3.format response.
|
||||
List<String> schemaLinkingResults = llmResults.stream()
|
||||
.map(llmResult -> OutputFormat.getSchemaLinks(llmResult)).collect(Collectors.toList());
|
||||
List<String> candidateSortedList = OutputFormat.formatList(schemaLinkingResults);
|
||||
Pair<String, Map<String, Double>> linkingMap = OutputFormat.selfConsistencyVote(candidateSortedList);
|
||||
List<String> sqlList = llmResults.stream()
|
||||
.map(llmResult -> OutputFormat.getSql(llmResult)).collect(Collectors.toList());
|
||||
List<String> sqlListSortedList = OutputFormat.formatList(sqlList);
|
||||
Pair<String, Map<String, Double>> sqlMap = OutputFormat.selfConsistencyVote(sqlListSortedList);
|
||||
log.info("linkingMap result:{},sqlMap:{}", linkingMap, sqlMap);
|
||||
return sqlMap.getRight();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void afterPropertiesSet() {
|
||||
SqlGenerationFactory.addSqlGenerationForFactory(SqlGenerationMode.ONE_PASS_AUTO_COT_SELF_CONSISTENCY, this);
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,63 @@
|
||||
package com.tencent.supersonic.chat.parser.sql.llm;
|
||||
|
||||
|
||||
import com.tencent.supersonic.chat.config.OptimizationConfig;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq.SqlGenerationMode;
|
||||
import com.tencent.supersonic.common.util.JsonUtil;
|
||||
import dev.langchain4j.data.message.AiMessage;
|
||||
import dev.langchain4j.model.chat.ChatLanguageModel;
|
||||
import dev.langchain4j.model.input.Prompt;
|
||||
import dev.langchain4j.model.input.PromptTemplate;
|
||||
import dev.langchain4j.model.output.Response;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.springframework.beans.factory.InitializingBean;
|
||||
import org.springframework.beans.factory.annotation.Autowired;
|
||||
import org.springframework.stereotype.Service;
|
||||
|
||||
@Service
|
||||
@Slf4j
|
||||
public class OnePassSqlGeneration implements SqlGeneration, InitializingBean {
|
||||
|
||||
@Autowired
|
||||
private ChatLanguageModel chatLanguageModel;
|
||||
|
||||
@Autowired
|
||||
private SqlExampleLoader sqlExampleLoader;
|
||||
|
||||
@Autowired
|
||||
private OptimizationConfig optimizationConfig;
|
||||
|
||||
@Autowired
|
||||
private SqlPromptGenerator sqlPromptGenerator;
|
||||
|
||||
@Override
|
||||
public Map<String, Double> generation(LLMReq llmReq, String modelClusterKey) {
|
||||
//1.retriever sqlExamples
|
||||
List<Map<String, String>> sqlExamples = sqlExampleLoader.retrieverSqlExamples(llmReq.getQueryText(),
|
||||
optimizationConfig.getText2sqlCollectionName(), optimizationConfig.getText2sqlExampleNum());
|
||||
|
||||
//2.generator linking and sql prompt by sqlExamples,and generate response.
|
||||
String promptStr = sqlPromptGenerator.generatorLinkingAndSqlPrompt(llmReq, sqlExamples);
|
||||
|
||||
Prompt prompt = PromptTemplate.from(JsonUtil.toString(promptStr)).apply(new HashMap<>());
|
||||
Response<AiMessage> response = chatLanguageModel.generate(prompt.toSystemMessage());
|
||||
|
||||
//3.format response.
|
||||
String llmResult = response.content().text();
|
||||
String schemaLinkStr = OutputFormat.getSchemaLinks(response.content().text());
|
||||
String sql = OutputFormat.getSql(response.content().text());
|
||||
Map<String, Double> sqlMap = new HashMap<>();
|
||||
sqlMap.put(sql, 1D);
|
||||
log.info("llmResult:{},schemaLinkStr:{},sql:{}", llmResult, schemaLinkStr, sql);
|
||||
return sqlMap;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void afterPropertiesSet() {
|
||||
SqlGenerationFactory.addSqlGenerationForFactory(SqlGenerationMode.ONE_PASS_AUTO_COT, this);
|
||||
}
|
||||
}
|
||||
@@ -1,24 +0,0 @@
|
||||
package com.tencent.supersonic.chat.parser.sql.llm;
|
||||
|
||||
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq.SqlGenerationMode;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.springframework.beans.factory.InitializingBean;
|
||||
import org.springframework.stereotype.Service;
|
||||
|
||||
@Service
|
||||
@Slf4j
|
||||
public class OneStepsSqlGeneration implements SqlGeneration, InitializingBean {
|
||||
|
||||
@Override
|
||||
public String generation(LLMReq llmReq, String modelClusterKey) {
|
||||
//TODO
|
||||
return "";
|
||||
}
|
||||
|
||||
@Override
|
||||
public void afterPropertiesSet() {
|
||||
SqlGenerationFactory.addSqlGenerationForFactory(SqlGenerationMode.ONE_STEP_AUTO_COT, this);
|
||||
}
|
||||
}
|
||||
@@ -2,10 +2,15 @@ package com.tencent.supersonic.chat.parser.sql.llm;
|
||||
|
||||
import com.tencent.supersonic.chat.parser.plugin.function.FunctionResp;
|
||||
import com.tencent.supersonic.common.util.JsonUtil;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Collections;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.regex.Matcher;
|
||||
import java.util.regex.Pattern;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.apache.commons.lang3.tuple.Pair;
|
||||
|
||||
/***
|
||||
* output format
|
||||
@@ -15,22 +20,96 @@ public class OutputFormat {
|
||||
|
||||
public static final String PATTERN = "\\{[^{}]+\\}";
|
||||
|
||||
public static String schemaLinkParse(String schemaLinkOutput) {
|
||||
public static String getSchemaLink(String schemaLink) {
|
||||
String reult = "";
|
||||
try {
|
||||
schemaLinkOutput = schemaLinkOutput.trim();
|
||||
reult = schemaLink.trim();
|
||||
String pattern = "Schema_links:(.*)";
|
||||
Pattern regexPattern = Pattern.compile(pattern, Pattern.DOTALL);
|
||||
Matcher matcher = regexPattern.matcher(schemaLinkOutput);
|
||||
Matcher matcher = regexPattern.matcher(reult);
|
||||
if (matcher.find()) {
|
||||
schemaLinkOutput = matcher.group(1).trim();
|
||||
} else {
|
||||
schemaLinkOutput = "";
|
||||
return matcher.group(1).trim();
|
||||
}
|
||||
} catch (Exception e) {
|
||||
log.error("", e);
|
||||
schemaLinkOutput = "";
|
||||
}
|
||||
return schemaLinkOutput;
|
||||
return reult;
|
||||
}
|
||||
|
||||
public static String getSql(String sqlOutput) {
|
||||
String sql = "";
|
||||
try {
|
||||
sqlOutput = sqlOutput.trim();
|
||||
String pattern = "SQL:(.*)";
|
||||
Pattern regexPattern = Pattern.compile(pattern);
|
||||
Matcher matcher = regexPattern.matcher(sqlOutput);
|
||||
if (matcher.find()) {
|
||||
return matcher.group(1);
|
||||
}
|
||||
} catch (Exception e) {
|
||||
log.error("", e);
|
||||
}
|
||||
return sql;
|
||||
}
|
||||
|
||||
public static String getSchemaLinks(String text) {
|
||||
String schemaLinks = "";
|
||||
try {
|
||||
text = text.trim();
|
||||
String pattern = "Schema_links:(\\[.*?\\])|Schema_links: (\\[.*?\\])";
|
||||
Pattern regexPattern = Pattern.compile(pattern);
|
||||
Matcher matcher = regexPattern.matcher(text);
|
||||
|
||||
if (matcher.find()) {
|
||||
if (matcher.group(1) != null) {
|
||||
schemaLinks = matcher.group(1);
|
||||
} else if (matcher.group(2) != null) {
|
||||
schemaLinks = matcher.group(2);
|
||||
}
|
||||
}
|
||||
} catch (Exception e) {
|
||||
log.error("", e);
|
||||
}
|
||||
|
||||
return schemaLinks;
|
||||
}
|
||||
|
||||
public static Pair<String, Map<String, Double>> selfConsistencyVote(List<String> inputList) {
|
||||
Map<String, Integer> inputCounts = new HashMap<>();
|
||||
for (String input : inputList) {
|
||||
inputCounts.put(input, inputCounts.getOrDefault(input, 0) + 1);
|
||||
}
|
||||
|
||||
String inputMax = null;
|
||||
int maxCount = 0;
|
||||
int inputSize = inputList.size();
|
||||
Map<String, Double> votePercentage = new HashMap<>();
|
||||
for (Map.Entry<String, Integer> entry : inputCounts.entrySet()) {
|
||||
String input = entry.getKey();
|
||||
int count = entry.getValue();
|
||||
if (count > maxCount) {
|
||||
inputMax = input;
|
||||
maxCount = count;
|
||||
}
|
||||
double percentage = (double) count / inputSize;
|
||||
votePercentage.put(input, percentage);
|
||||
}
|
||||
return Pair.of(inputMax, votePercentage);
|
||||
}
|
||||
|
||||
public static List<String> formatList(List<String> toFormatList) {
|
||||
List<String> results = new ArrayList<>();
|
||||
for (String toFormat : toFormatList) {
|
||||
List<String> items = new ArrayList<>();
|
||||
String[] split = toFormat.replace("[", "").replace("]", "").split(",");
|
||||
for (String item : split) {
|
||||
items.add(item.trim());
|
||||
}
|
||||
Collections.sort(items);
|
||||
String result = "[" + String.join(",", items) + "]";
|
||||
results.add(result);
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
public static FunctionResp functionCallParse(String llmOutput) {
|
||||
@@ -47,7 +126,7 @@ public class OutputFormat {
|
||||
return resp;
|
||||
} catch (Exception e) {
|
||||
log.error("", e);
|
||||
return null;
|
||||
}
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1,32 +1,19 @@
|
||||
package com.tencent.supersonic.chat.parser.sql.llm;
|
||||
|
||||
import com.fasterxml.jackson.annotation.JsonProperty;
|
||||
import lombok.Data;
|
||||
|
||||
@Data
|
||||
public class SqlExample {
|
||||
|
||||
@JsonProperty("currentDate")
|
||||
private String currentDate;
|
||||
|
||||
@JsonProperty("tableName")
|
||||
private String tableName;
|
||||
|
||||
@JsonProperty("fieldsList")
|
||||
private String fieldsList;
|
||||
|
||||
@JsonProperty("question")
|
||||
private String question;
|
||||
|
||||
@JsonProperty("priorSchemaLinks")
|
||||
private String priorSchemaLinks;
|
||||
private String questionAugmented;
|
||||
|
||||
@JsonProperty("analysis")
|
||||
private String analysis;
|
||||
private String dbSchema;
|
||||
|
||||
@JsonProperty("schemaLinks")
|
||||
private String schemaLinks;
|
||||
|
||||
@JsonProperty("sql")
|
||||
private String sql;
|
||||
|
||||
private String generatedSchemaLinkingCoT;
|
||||
|
||||
private String generatedSchemaLinkings;
|
||||
}
|
||||
@@ -26,7 +26,7 @@ import org.springframework.stereotype.Component;
|
||||
@Component
|
||||
public class SqlExampleLoader {
|
||||
|
||||
private static final String EXAMPLE_JSON_FILE = "example.json";
|
||||
private static final String EXAMPLE_JSON_FILE = "s2ql_examplar.json";
|
||||
|
||||
private S2EmbeddingStore s2EmbeddingStore = ComponentFactory.getS2EmbeddingStore();
|
||||
private TypeReference<List<SqlExample>> valueTypeRef = new TypeReference<List<SqlExample>>() {
|
||||
|
||||
@@ -2,12 +2,19 @@ package com.tencent.supersonic.chat.parser.sql.llm;
|
||||
|
||||
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq;
|
||||
import java.util.Map;
|
||||
|
||||
/**
|
||||
* Sql Generation
|
||||
* Sql Generation interface, generating SQL using a large model.
|
||||
*/
|
||||
public interface SqlGeneration {
|
||||
|
||||
String generation(LLMReq llmReq, String modelClusterKey);
|
||||
/***
|
||||
* generate SQL through LLMReq.
|
||||
* @param llmReq
|
||||
* @param modelClusterKey
|
||||
* @return
|
||||
*/
|
||||
Map<String, Double> generation(LLMReq llmReq, String modelClusterKey);
|
||||
|
||||
}
|
||||
|
||||
@@ -1,65 +1,131 @@
|
||||
package com.tencent.supersonic.chat.parser.sql.llm;
|
||||
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq.ElementValue;
|
||||
import java.util.ArrayList;
|
||||
import java.util.Arrays;
|
||||
import java.util.Collections;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.stream.Collectors;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.apache.commons.lang3.tuple.Pair;
|
||||
import org.springframework.stereotype.Component;
|
||||
|
||||
@Component
|
||||
@Slf4j
|
||||
public class SqlPromptGenerator {
|
||||
|
||||
public String generateSchemaLinkingPrompt(String question, String modelName, List<String> fieldsList,
|
||||
List<ElementValue> priorSchemaLinks, List<Map<String, String>> exampleList) {
|
||||
public String generatorLinkingAndSqlPrompt(LLMReq llmReq, List<Map<String, String>> exampleList) {
|
||||
String instruction =
|
||||
"# Find the schema_links for generating SQL queries for each question based on the database schema "
|
||||
+ "and Foreign keys. Then use the the schema links to generate the "
|
||||
+ "SQL queries for each of the questions.";
|
||||
|
||||
String exampleTemplate = "Table {tableName}, columns = {fieldsList}, prior_schema_links = {priorSchemaLinks}\n"
|
||||
+ "问题:{question}\n分析:{analysis} 所以Schema_links是:\nSchema_links:{schemaLinks}";
|
||||
List<String> exampleKeys = Arrays.asList("questionAugmented", "dbSchema", "generatedSchemaLinkingCoT", "sql");
|
||||
String exampleTemplate = "dbSchema\nQ: questionAugmented\nA: generatedSchemaLinkingCoT\nSQL: sql";
|
||||
|
||||
List<String> exampleKeys = Arrays.asList("tableName", "fieldsList", "priorSchemaLinks", "question", "analysis",
|
||||
"schemaLinks");
|
||||
String exampleFormat = InputFormat.format(exampleTemplate, exampleKeys, exampleList);
|
||||
|
||||
String schemaLinkingPrompt = InputFormat.format(exampleTemplate, exampleKeys, exampleList);
|
||||
Pair<String, String> questionPrompt = transformQuestionPrompt(llmReq);
|
||||
String dbSchema = questionPrompt.getLeft();
|
||||
String questionAugmented = questionPrompt.getRight();
|
||||
|
||||
String newCaseTemplate = "Table {tableName}, columns = {fieldsList}, prior_schema_links = {priorSchemaLinks}\n"
|
||||
+ "问题:{question}\n分析: 让我们一步一步地思考。";
|
||||
String newCaseTemplate = "%s\nQ: %s\nA: Let’s think step by step. In the question \"%s\", we are asked:";
|
||||
String newCasePrompt = String.format(newCaseTemplate, dbSchema, questionAugmented, questionAugmented);
|
||||
|
||||
String newCasePrompt = newCaseTemplate.replace("{tableName}", modelName)
|
||||
.replace("{fieldsList}", fieldsList.toString())
|
||||
.replace("{priorSchemaLinks}", getPriorSchemaLinks(priorSchemaLinks))
|
||||
.replace("{question}", question);
|
||||
return instruction + InputFormat.SEPERATOR + exampleFormat + InputFormat.SEPERATOR + newCasePrompt;
|
||||
}
|
||||
|
||||
String instruction = "# 根据数据库的表结构,参考先验信息,找出为每个问题生成SQL查询语句的schema_links";
|
||||
public String generateLinkingPrompt(LLMReq llmReq, List<Map<String, String>> exampleList) {
|
||||
String instruction = "# Find the schema_links for generating SQL queries for each question "
|
||||
+ "based on the database schema and Foreign keys.";
|
||||
|
||||
List<String> exampleKeys = Arrays.asList("questionAugmented", "dbSchema", "generatedSchemaLinkingCoT");
|
||||
String exampleTemplate = "dbSchema\nQ: questionAugmented\nA: generatedSchemaLinkingCoT";
|
||||
String exampleFormat = InputFormat.format(exampleTemplate, exampleKeys, exampleList);
|
||||
|
||||
Pair<String, String> questionPrompt = transformQuestionPrompt(llmReq);
|
||||
String dbSchema = questionPrompt.getLeft();
|
||||
String questionAugmented = questionPrompt.getRight();
|
||||
String newCaseTemplate = "%s\nQ: %s\nA: Let’s think step by step. In the question \"%s\", we are asked:";
|
||||
String newCasePrompt = String.format(newCaseTemplate, dbSchema, questionAugmented, questionAugmented);
|
||||
|
||||
return instruction + InputFormat.SEPERATOR + exampleFormat + InputFormat.SEPERATOR + newCasePrompt;
|
||||
}
|
||||
|
||||
public String generateSqlPrompt(LLMReq llmReq, String schemaLinkStr, List<Map<String, String>> fewshotExampleList) {
|
||||
String instruction = "# Use the the schema links to generate the SQL queries for each of the questions.";
|
||||
List<String> exampleKeys = Arrays.asList("questionAugmented", "dbSchema", "generatedSchemaLinkings", "sql");
|
||||
String exampleTemplate = "dbSchema\nQ: questionAugmented\n"
|
||||
+ "Schema_links: generatedSchemaLinkings\nSQL: {sql}";
|
||||
|
||||
String schemaLinkingPrompt = InputFormat.format(exampleTemplate, exampleKeys, fewshotExampleList);
|
||||
Pair<String, String> questionPrompt = transformQuestionPrompt(llmReq);
|
||||
String dbSchema = questionPrompt.getLeft();
|
||||
String questionAugmented = questionPrompt.getRight();
|
||||
String newCaseTemplate = "%s\nQ: %s\nSchema_links: %s\nSQL: ";
|
||||
String newCasePrompt = String.format(newCaseTemplate, dbSchema, questionAugmented, schemaLinkStr);
|
||||
return instruction + InputFormat.SEPERATOR + schemaLinkingPrompt + InputFormat.SEPERATOR + newCasePrompt;
|
||||
}
|
||||
|
||||
private String getPriorSchemaLinks(List<ElementValue> priorSchemaLinks) {
|
||||
return priorSchemaLinks.stream()
|
||||
.map(elementValue -> "'" + elementValue.getFieldName() + "'->" + elementValue.getFieldValue())
|
||||
.collect(Collectors.joining(",", "[", "]"));
|
||||
public List<String> generatePromptPool(LLMReq llmReq, List<List<Map<String, String>>> exampleListPool,
|
||||
boolean isSqlPrompt) {
|
||||
List<String> promptPool = new ArrayList<>();
|
||||
for (List<Map<String, String>> exampleList : exampleListPool) {
|
||||
String prompt;
|
||||
if (isSqlPrompt) {
|
||||
prompt = generatorLinkingAndSqlPrompt(llmReq, exampleList);
|
||||
} else {
|
||||
prompt = generateLinkingPrompt(llmReq, exampleList);
|
||||
}
|
||||
promptPool.add(prompt);
|
||||
}
|
||||
return promptPool;
|
||||
}
|
||||
|
||||
public String generateSqlPrompt(String question, String modelName, String schemaLinkStr, String dataDate,
|
||||
List<Map<String, String>> exampleList) {
|
||||
public List<List<Map<String, String>>> getExampleCombos(List<Map<String, String>> exampleList, int numFewShots,
|
||||
int numSelfConsistency) {
|
||||
List<List<Map<String, String>>> results = new ArrayList<>();
|
||||
for (int i = 0; i < numSelfConsistency; i++) {
|
||||
List<Map<String, String>> shuffledList = new ArrayList<>(exampleList);
|
||||
Collections.shuffle(shuffledList);
|
||||
results.add(shuffledList.subList(0, numFewShots));
|
||||
}
|
||||
return results;
|
||||
}
|
||||
|
||||
List<String> exampleKeys = Arrays.asList("question", "currentDate", "tableName", "schemaLinks", "sql");
|
||||
String exampleTemplate = "问题:{question}\nCurrent_date:{currentDate}\nTable {tableName}\n"
|
||||
+ "Schema_links:{schemaLinks}\nSQL:{sql}";
|
||||
public Pair<String, String> transformQuestionPrompt(LLMReq llmReq) {
|
||||
String modelName = llmReq.getSchema().getModelName();
|
||||
List<String> fieldNameList = llmReq.getSchema().getFieldNameList();
|
||||
List<ElementValue> linking = llmReq.getLinking();
|
||||
String currentDate = llmReq.getCurrentDate();
|
||||
String priorExts = llmReq.getPriorExts();
|
||||
|
||||
String sqlExamplePrompt = InputFormat.format(exampleTemplate, exampleKeys, exampleList);
|
||||
String dbSchema = "Table: " + modelName + ", Columns = " + fieldNameList + "\nForeign_keys: []";
|
||||
|
||||
String newCaseTemplate = "问题:{question}\nCurrent_date:{currentDate}\nTable {tableName}\n"
|
||||
+ "Schema_links:{schemaLinks}\nSQL:";
|
||||
List<String> priorLinkingList = new ArrayList<>();
|
||||
for (ElementValue priorLinking : linking) {
|
||||
String fieldName = priorLinking.getFieldName();
|
||||
String fieldValue = priorLinking.getFieldValue();
|
||||
priorLinkingList.add("'" + fieldValue + "'是一个'" + fieldName + "'");
|
||||
}
|
||||
String currentDataStr = "当前的日期是" + currentDate;
|
||||
String linkingListStr = String.join(",", priorLinkingList);
|
||||
String questionAugmented = String.format("%s (补充信息:%s 。 %s) (备注: %s)", llmReq.getQueryText(), linkingListStr,
|
||||
currentDataStr, priorExts);
|
||||
return Pair.of(dbSchema, questionAugmented);
|
||||
}
|
||||
|
||||
String newCasePrompt = newCaseTemplate.replace("{question}", question)
|
||||
.replace("{currentDate}", dataDate)
|
||||
.replace("{tableName}", modelName)
|
||||
.replace("{schemaLinks}", schemaLinkStr);
|
||||
|
||||
String instruction = "# 根据schema_links为每个问题生成SQL查询语句";
|
||||
return instruction + InputFormat.SEPERATOR + sqlExamplePrompt + InputFormat.SEPERATOR + newCasePrompt;
|
||||
public List<String> generateSqlPromptPool(LLMReq llmReq, List<String> schemaLinkStrPool,
|
||||
List<List<Map<String, String>>> fewshotExampleListPool) {
|
||||
List<String> sqlPromptPool = new ArrayList<>();
|
||||
for (int i = 0; i < schemaLinkStrPool.size(); i++) {
|
||||
String schemaLinkStr = schemaLinkStrPool.get(i);
|
||||
List<Map<String, String>> fewshotExampleList = fewshotExampleListPool.get(i);
|
||||
String sqlPrompt = generateSqlPrompt(llmReq, schemaLinkStr, fewshotExampleList);
|
||||
sqlPromptPool.add(sqlPrompt);
|
||||
}
|
||||
return sqlPromptPool;
|
||||
}
|
||||
|
||||
}
|
||||
@@ -0,0 +1,81 @@
|
||||
package com.tencent.supersonic.chat.parser.sql.llm;
|
||||
|
||||
|
||||
import com.tencent.supersonic.chat.config.OptimizationConfig;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq.SqlGenerationMode;
|
||||
import com.tencent.supersonic.common.util.JsonUtil;
|
||||
import dev.langchain4j.data.message.AiMessage;
|
||||
import dev.langchain4j.model.chat.ChatLanguageModel;
|
||||
import dev.langchain4j.model.input.Prompt;
|
||||
import dev.langchain4j.model.input.PromptTemplate;
|
||||
import dev.langchain4j.model.output.Response;
|
||||
import java.util.HashMap;
|
||||
import java.util.List;
|
||||
import java.util.Map;
|
||||
import java.util.concurrent.CopyOnWriteArrayList;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.apache.commons.lang3.tuple.Pair;
|
||||
import org.springframework.beans.factory.InitializingBean;
|
||||
import org.springframework.beans.factory.annotation.Autowired;
|
||||
import org.springframework.stereotype.Service;
|
||||
|
||||
@Service
|
||||
@Slf4j
|
||||
public class TwoPassSCSqlGeneration implements SqlGeneration, InitializingBean {
|
||||
|
||||
@Autowired
|
||||
private ChatLanguageModel chatLanguageModel;
|
||||
|
||||
@Autowired
|
||||
private SqlExampleLoader sqlExampleLoader;
|
||||
|
||||
@Autowired
|
||||
private OptimizationConfig optimizationConfig;
|
||||
|
||||
@Autowired
|
||||
private SqlPromptGenerator sqlPromptGenerator;
|
||||
|
||||
@Override
|
||||
public Map<String, Double> generation(LLMReq llmReq, String modelClusterKey) {
|
||||
//1.retriever sqlExamples and generate exampleListPool
|
||||
List<Map<String, String>> sqlExamples = sqlExampleLoader.retrieverSqlExamples(llmReq.getQueryText(),
|
||||
optimizationConfig.getText2sqlCollectionName(), optimizationConfig.getText2sqlExampleNum());
|
||||
|
||||
List<List<Map<String, String>>> exampleListPool = sqlPromptGenerator.getExampleCombos(sqlExamples,
|
||||
optimizationConfig.getText2sqlFewShotsNum(), optimizationConfig.getText2sqlSelfConsistencyNum());
|
||||
|
||||
//2.generator linking prompt,and parallel generate response.
|
||||
List<String> linkingPromptPool = sqlPromptGenerator.generatePromptPool(llmReq, exampleListPool, false);
|
||||
List<String> linkingResults = new CopyOnWriteArrayList<>();
|
||||
linkingPromptPool.parallelStream().forEach(
|
||||
linkingPrompt -> {
|
||||
Prompt prompt = PromptTemplate.from(JsonUtil.toString(linkingPrompt)).apply(new HashMap<>());
|
||||
Response<AiMessage> linkingResult = chatLanguageModel.generate(prompt.toSystemMessage());
|
||||
String result = linkingResult.content().text();
|
||||
linkingResults.add(OutputFormat.getSchemaLink(result));
|
||||
}
|
||||
);
|
||||
List<String> sortedList = OutputFormat.formatList(linkingResults);
|
||||
Pair<String, Map<String, Double>> linkingMap = OutputFormat.selfConsistencyVote(sortedList);
|
||||
//3.generator sql prompt,and parallel generate response.
|
||||
List<String> sqlPromptPool = sqlPromptGenerator.generateSqlPromptPool(llmReq, sortedList, exampleListPool);
|
||||
List<String> sqlTaskPool = new CopyOnWriteArrayList<>();
|
||||
sqlPromptPool.parallelStream().forEach(sqlPrompt -> {
|
||||
Prompt linkingPrompt = PromptTemplate.from(JsonUtil.toString(sqlPrompt)).apply(new HashMap<>());
|
||||
Response<AiMessage> sqlResult = chatLanguageModel.generate(linkingPrompt.toSystemMessage());
|
||||
String result = sqlResult.content().text();
|
||||
sqlTaskPool.add(result);
|
||||
});
|
||||
//4.format response.
|
||||
List<String> sqlTaskSortedList = OutputFormat.formatList(sqlTaskPool);
|
||||
Pair<String, Map<String, Double>> sqlMap = OutputFormat.selfConsistencyVote(sqlTaskSortedList);
|
||||
log.info("linkingMap result:{},sqlMap:{}", linkingMap, sqlMap);
|
||||
return sqlMap.getRight();
|
||||
}
|
||||
|
||||
@Override
|
||||
public void afterPropertiesSet() {
|
||||
SqlGenerationFactory.addSqlGenerationForFactory(SqlGenerationMode.TWO_PASS_AUTO_COT_SELF_CONSISTENCY, this);
|
||||
}
|
||||
}
|
||||
@@ -3,7 +3,6 @@ package com.tencent.supersonic.chat.parser.sql.llm;
|
||||
|
||||
import com.tencent.supersonic.chat.config.OptimizationConfig;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq.ElementValue;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq.SqlGenerationMode;
|
||||
import com.tencent.supersonic.common.util.JsonUtil;
|
||||
import dev.langchain4j.data.message.AiMessage;
|
||||
@@ -21,7 +20,7 @@ import org.springframework.stereotype.Service;
|
||||
|
||||
@Service
|
||||
@Slf4j
|
||||
public class TwoStepSqlGeneration implements SqlGeneration, InitializingBean {
|
||||
public class TwoPassSqlGeneration implements SqlGeneration, InitializingBean {
|
||||
|
||||
@Autowired
|
||||
private ChatLanguageModel chatLanguageModel;
|
||||
@@ -36,36 +35,29 @@ public class TwoStepSqlGeneration implements SqlGeneration, InitializingBean {
|
||||
private SqlPromptGenerator sqlPromptGenerator;
|
||||
|
||||
@Override
|
||||
public String generation(LLMReq llmReq, String modelClusterKey) {
|
||||
String text2sqlCollectionName = optimizationConfig.getText2sqlCollectionName();
|
||||
int text2sqlFewShotsNum = optimizationConfig.getText2sqlFewShotsNum();
|
||||
String queryText = llmReq.getQueryText();
|
||||
public Map<String, Double> generation(LLMReq llmReq, String modelClusterKey) {
|
||||
|
||||
List<Map<String, String>> sqlExamples = sqlExampleLoader.retrieverSqlExamples(queryText, text2sqlCollectionName,
|
||||
text2sqlFewShotsNum);
|
||||
List<Map<String, String>> sqlExamples = sqlExampleLoader.retrieverSqlExamples(llmReq.getQueryText(),
|
||||
optimizationConfig.getText2sqlCollectionName(), optimizationConfig.getText2sqlExampleNum());
|
||||
|
||||
String modelName = llmReq.getSchema().getModelName();
|
||||
List<String> fieldNameList = llmReq.getSchema().getFieldNameList();
|
||||
List<ElementValue> linking = llmReq.getLinking();
|
||||
String linkingPromptStr = sqlPromptGenerator.generateLinkingPrompt(llmReq, sqlExamples);
|
||||
|
||||
String linkingPromptStr = sqlPromptGenerator.generateSchemaLinkingPrompt(queryText, modelName, fieldNameList,
|
||||
linking, sqlExamples);
|
||||
Prompt prompt = PromptTemplate.from(JsonUtil.toString(linkingPromptStr)).apply(new HashMap<>());
|
||||
Response<AiMessage> response = chatLanguageModel.generate(prompt.toSystemMessage());
|
||||
|
||||
Prompt linkingPrompt = PromptTemplate.from(JsonUtil.toString(linkingPromptStr)).apply(new HashMap<>());
|
||||
Response<AiMessage> linkingResult = chatLanguageModel.generate(linkingPrompt.toSystemMessage());
|
||||
String schemaLinkStr = OutputFormat.getSchemaLink(response.content().text());
|
||||
|
||||
String schemaLinkStr = OutputFormat.schemaLinkParse(linkingResult.content().text());
|
||||
|
||||
String generateSqlPrompt = sqlPromptGenerator.generateSqlPrompt(queryText, modelName, schemaLinkStr,
|
||||
llmReq.getCurrentDate(), sqlExamples);
|
||||
String generateSqlPrompt = sqlPromptGenerator.generateSqlPrompt(llmReq, schemaLinkStr, sqlExamples);
|
||||
|
||||
Prompt sqlPrompt = PromptTemplate.from(JsonUtil.toString(generateSqlPrompt)).apply(new HashMap<>());
|
||||
Response<AiMessage> sqlResult = chatLanguageModel.generate(sqlPrompt.toSystemMessage());
|
||||
return sqlResult.content().text();
|
||||
Map<String, Double> sqlMap = new HashMap<>();
|
||||
sqlMap.put(sqlResult.content().text(), 1D);
|
||||
return sqlMap;
|
||||
}
|
||||
|
||||
@Override
|
||||
public void afterPropertiesSet() {
|
||||
SqlGenerationFactory.addSqlGenerationForFactory(SqlGenerationMode.TWO_STEP_AUTO_COT, this);
|
||||
SqlGenerationFactory.addSqlGenerationForFactory(SqlGenerationMode.TWO_PASS_AUTO_COT, this);
|
||||
}
|
||||
}
|
||||
@@ -1,24 +0,0 @@
|
||||
package com.tencent.supersonic.chat.parser.sql.llm;
|
||||
|
||||
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq;
|
||||
import com.tencent.supersonic.chat.query.llm.s2sql.LLMReq.SqlGenerationMode;
|
||||
import lombok.extern.slf4j.Slf4j;
|
||||
import org.springframework.beans.factory.InitializingBean;
|
||||
import org.springframework.stereotype.Service;
|
||||
|
||||
@Service
|
||||
@Slf4j
|
||||
public class TwoStepCSSqlGeneration implements SqlGeneration, InitializingBean {
|
||||
|
||||
@Override
|
||||
public String generation(LLMReq llmReq, String modelClusterKey) {
|
||||
//TODO
|
||||
return "";
|
||||
}
|
||||
|
||||
@Override
|
||||
public void afterPropertiesSet() {
|
||||
SqlGenerationFactory.addSqlGenerationForFactory(SqlGenerationMode.TWO_STEP_AUTO_COT_SELF_CONSISTENCY, this);
|
||||
}
|
||||
}
|
||||
@@ -19,9 +19,7 @@ public class LLMReq {
|
||||
|
||||
private String priorExts;
|
||||
|
||||
// FIXME: Currently Java code is not use AUTO_COT, only two step, but it is used in Python
|
||||
// code, we use it here just for compatibility. The Java code will be updated in the future.
|
||||
private SqlGenerationMode sqlGenerationMode = SqlGenerationMode.TWO_STEP_AUTO_COT;
|
||||
private SqlGenerationMode sqlGenerationMode = SqlGenerationMode.TWO_PASS_AUTO_COT;
|
||||
|
||||
@Data
|
||||
public static class ElementValue {
|
||||
@@ -51,13 +49,13 @@ public class LLMReq {
|
||||
|
||||
public enum SqlGenerationMode {
|
||||
|
||||
ONE_STEP_AUTO_COT("1_pass_auto_cot"),
|
||||
ONE_PASS_AUTO_COT("1_pass_auto_cot"),
|
||||
|
||||
ONE_STEP_AUTO_COT_SELF_CONSISTENCY("1_pass_auto_cot_self_consistency"),
|
||||
ONE_PASS_AUTO_COT_SELF_CONSISTENCY("1_pass_auto_cot_self_consistency"),
|
||||
|
||||
TWO_STEP_AUTO_COT("2_pass_auto_cot"),
|
||||
TWO_PASS_AUTO_COT("2_pass_auto_cot"),
|
||||
|
||||
TWO_STEP_AUTO_COT_SELF_CONSISTENCY("2_pass_auto_cot_self_consistency");
|
||||
TWO_PASS_AUTO_COT_SELF_CONSISTENCY("2_pass_auto_cot_self_consistency");
|
||||
|
||||
|
||||
private String name;
|
||||
|
||||
@@ -14,7 +14,7 @@ import org.springframework.stereotype.Component;
|
||||
|
||||
@Slf4j
|
||||
@Component
|
||||
@Order(4)
|
||||
@Order(0)
|
||||
public class EmbeddingInitListener implements CommandLineRunner {
|
||||
|
||||
@Autowired
|
||||
|
||||
@@ -50,7 +50,7 @@ s2:
|
||||
provider: open_ai
|
||||
openai:
|
||||
api-key: api_key
|
||||
model-name: gpt-3.5-turbo
|
||||
model-name: gpt-3.5-turbo-16k
|
||||
temperature: 0.0
|
||||
timeout: PT60S
|
||||
#2.embedding-model
|
||||
|
||||
@@ -1,312 +0,0 @@
|
||||
[
|
||||
{
|
||||
"currentDate":"2020-12-01",
|
||||
"tableName":"内容库产品",
|
||||
"fieldsList":"[\"部门\", \"模块\", \"用户名\", \"访问次数\", \"访问人数\", \"访问时长\", \"数据日期\"]",
|
||||
"question":"比较jackjchen和robinlee在内容库的访问次数",
|
||||
"priorSchemaLinks":"['jackjchen'->用户名, 'robinlee'->用户名]",
|
||||
"analysis":"让我们一步一步地思考。在问题“比较jackjchen和robinlee在内容库的访问次数“中,我们被问:\n“比较jackjchen和robinlee”,所以我们需要column=[用户名],cell values = ['jackjchen', 'robinlee'],所以有[用户名:('jackjchen', 'robinlee')]\n”内容库的访问次数“,所以我们需要column=[访问次数]",
|
||||
"schemaLinks":"[\"用户名\":(\"'jackjchen'\", \"'robinlee'\"), \"访问次数\"]",
|
||||
"sql":"select 用户名, 访问次数 from 内容库产品 where 用户名 in ('jackjchen', 'robinlee')"
|
||||
},
|
||||
{
|
||||
"currentDate":"2022-11-06",
|
||||
"tableName":"内容库产品",
|
||||
"fieldsList":"[\"部门\", \"模块\", \"用户名\", \"访问次数\", \"访问人数\", \"访问时长\", \"数据日期\"]",
|
||||
"question":"内容库近12个月访问人数 按部门",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“内容库近12个月访问人数 按部门“中,我们被问:\n”内容库近12个月“,所以我们需要column=[数据日期],cell values = [12],所以有[数据日期:(12)]\n“访问人数”,所以我们需要column=[访问人数]\n”按部门“,所以我们需要column=[部门]",
|
||||
"schemaLinks":"[\"数据日期\":(12), \"访问人数\", \"部门\"]",
|
||||
"sql":"select 部门, 数据日期, 访问人数 from 内容库产品 where datediff('month', 数据日期, '2022-11-06') <= 12 "
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-04-21",
|
||||
"tableName":"内容库产品",
|
||||
"fieldsList":"[\"部门\", \"模块\", \"用户名\", \"访问次数\", \"访问人数\", \"访问时长\", \"数据日期\"]",
|
||||
"question":"内容库美术部、技术研发部的访问时长",
|
||||
"priorSchemaLinks":"['美术部'->部门, '技术研发部'->部门]",
|
||||
"analysis":"让我们一步一步地思考。在问题“内容库美术部、技术研发部的访问时长“中,我们被问:\n“访问时长”,所以我们需要column=[访问时长]\n”内容库美术部、技术研发部“,所以我们需要column=[部门], cell values = ['美术部', '技术研发部'],所以有[部门:('美术部', '技术研发部')]",
|
||||
"schemaLinks":"[\"访问时长\", \"部门\":(\"'美术部'\", \"'技术研发部'\")]",
|
||||
"sql":"select 部门, 访问时长 from 内容库产品 where 部门 in ('美术部', '技术研发部')"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-08-21",
|
||||
"tableName":"严选",
|
||||
"fieldsList":"[\"严选版权归属系\", \"付费模式\", \"结算播放份额\", \"付费用户结算播放份额\", \"数据日期\"]",
|
||||
"question":"近3天海田飞系MPPM结算播放份额",
|
||||
"priorSchemaLinks":"['海田飞系'->严选版权归属系]",
|
||||
"analysis":"让我们一步一步地思考。在问题“近3天海田飞系MPPM结算播放份额“中,我们被问:\n“MPPM结算播放份额”,所以我们需要column=[结算播放份额], \n”海田飞系“,所以我们需要column=[严选版权归属系], cell values = ['海田飞系'],所以有[严选版权归属系:('海田飞系')],\n”近3天“,所以我们需要column=[数据日期], cell values = [3],所以有[数据日期:(3)]",
|
||||
"schemaLinks":"[\"结算播放份额\", \"严选版权归属系\":(\"'海田飞系'\"), \"数据日期\":(3)]",
|
||||
"sql":"select 严选版权归属系, 结算播放份额 from 严选 where 严选版权归属系 = '海田飞系' and datediff('day', 数据日期, '2023-08-21') <= 3 "
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-05-22",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"是否潮流人歌曲\", \"C音歌曲ID\", \"C音歌曲MID\", \"歌曲名\", \"歌曲版本\", \"语种\", \"歌曲类型\", \"翻唱类型\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"结算播放量\", \"运营播放量\", \"付费用户结算播放量\", \"历史累计结算播放量\", \"运营搜播量\", \"结算搜播量\", \"运营完播量\", \"运营推播量\", \"近7日复播率\", \"日均搜播量\", \"数据日期\"]",
|
||||
"question":"对比近7天翻唱版和纯音乐的歌曲播放量",
|
||||
"priorSchemaLinks":"['纯音乐'->语种, '翻唱版'->歌曲版本]",
|
||||
"analysis":"让我们一步一步地思考。在问题“对比近3天翻唱版和纯音乐的歌曲播放量“中,我们被问:\n“歌曲播放量”,所以我们需要column=[结算播放量]\n”翻唱版“,所以我们需要column=[歌曲版本], cell values = ['翻唱版'],所以有[歌曲版本:('翻唱版')]\n”和纯音乐的歌曲“,所以我们需要column=[语种], cell values = ['纯音乐'],所以有[语种:('纯音乐')]\n”近7天“,所以我们需要column=[数据日期], cell values = [7],所以有[数据日期:(7)]",
|
||||
"schemaLinks":"[\"结算播放量\", \"歌曲版本\":(\"'翻唱版'\"), \"语种\":(\"'纯音乐'\"), \"数据日期\":(7)]",
|
||||
"sql":"select 歌曲版本, 语种, 结算播放量 from 歌曲库 where 歌曲版本 = '翻唱版' and 语种 = '纯音乐' and datediff('day', 数据日期, '2023-05-22') <= 7 "
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-05-31",
|
||||
"tableName":"艺人库",
|
||||
"fieldsList":"[\"上下架状态\", \"歌手名\", \"歌手等级\", \"歌手类型\", \"歌手来源\", \"MPPM潮流人等级\", \"活跃区域\", \"年龄\", \"歌手才能\", \"歌手风格\", \"粉丝数\", \"潮音粉丝数\", \"超声波粉丝数\", \"推博粉丝数\", \"超声波歌曲数\", \"在架歌曲数\", \"超声波分享数\", \"独占歌曲数\", \"超声波在架歌曲评论数\", \"有播放量歌曲数\", \"数据日期\"]",
|
||||
"question":"对比一下陈拙悬、孟梅琦、赖媚韵的粉丝数",
|
||||
"priorSchemaLinks":"['1527896'->MPPM歌手ID, '1565463'->MPPM歌手ID, '2141459'->MPPM歌手ID]",
|
||||
"analysis":"让我们一步一步地思考。在问题“对比一下陈拙悬、孟梅琦、赖媚韵的粉丝数“中,我们被问:\n“粉丝数”,所以我们需要column=[粉丝数]\n”陈拙悬、孟梅琦、赖媚韵“,所以我们需要column=[歌手名], cell values = ['陈拙悬', '孟梅琦', '赖媚韵'],所以有[歌手名:('陈拙悬', '孟梅琦', '赖媚韵')]",
|
||||
"schemaLinks":"[\"粉丝数\", \"歌手名\":(\"'陈拙悬'\", \"'孟梅琦'\", \"'赖媚韵'\")]",
|
||||
"sql":"select 歌手名, 粉丝数 from 艺人库 where 歌手名 in ('陈拙悬', '孟梅琦', '赖媚韵')"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-07-31",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"歌曲名\", \"歌曲版本\", \"歌曲类型\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]",
|
||||
"question":"播放量大于1万的歌曲有多少",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“播放量大于1万的歌曲有多少“中,我们被问:\n“歌曲有多少”,所以我们需要column=[歌曲名]\n”播放量大于1万的“,所以我们需要column=[结算播放量], cell values = [10000],所以有[结算播放量:(10000)]",
|
||||
"schemaLinks":"[\"歌曲名\", \"结算播放量\":(10000)]",
|
||||
"sql":"select 歌曲名 from 歌曲库 where 结算播放量 > 10000"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-07-31",
|
||||
"tableName":"内容库产品",
|
||||
"fieldsList":"[\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]",
|
||||
"question":"内容库访问时长小于1小时,且来自美术部的用户是哪些",
|
||||
"priorSchemaLinks":"['美术部'->部门]",
|
||||
"analysis":"让我们一步一步地思考。在问题“内容库访问时长小于1小时,且来自美术部的用户是哪些“中,我们被问:\n“用户是哪些”,所以我们需要column=[用户名]\n”美术部的“,所以我们需要column=[部门], cell values = ['美术部'],所以有[部门:('美术部')]\n”访问时长小于1小时“,所以我们需要column=[访问时长], cell values = [1],所以有[访问时长:(1)]",
|
||||
"schemaLinks":"[\"用户名\", \"部门\":(\"'美术部'\"), \"访问时长\":(1)]",
|
||||
"sql":"select 用户名 from 内容库产品 where 部门 = '美术部' and 访问时长 < 1"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-08-31",
|
||||
"tableName":"内容库产品",
|
||||
"fieldsList":"[\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]",
|
||||
"question":"内容库pv最高的用户有哪些",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“内容库pv最高的用户有哪些“中,我们被问:\n“用户有哪些”,所以我们需要column=[用户名]\n”pv最高的“,所以我们需要column=[访问次数], cell values = [1],所以有[访问次数:(1)]",
|
||||
"schemaLinks":"[\"用户名\", \"访问次数\":(1)]",
|
||||
"sql":"select 用户名 from 内容库产品 order by 访问次数 desc limit 1"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-08-31",
|
||||
"tableName":"艺人库",
|
||||
"fieldsList":"[\"播放量层级\", \"播放量单调性\", \"播放量方差\", \"播放量突增类型\", \"播放量集中度\", \"歌手名\", \"歌手等级\", \"歌手类型\", \"歌手来源\", \"MPPM潮流人等级\", \"结算播放量\", \"运营播放量\", \"历史累计结算播放量\", \"有播放量歌曲数\", \"历史累计运营播放量\", \"付费用户结算播放量\", \"结算播放量占比\", \"运营播放份额\", \"免费用户结算播放占比\", \"完播量\", \"数据日期\"]",
|
||||
"question":"近90天袁亚伟播放量平均值是多少",
|
||||
"priorSchemaLinks":"['152789226'->MPPM歌手ID]",
|
||||
"analysis":"让我们一步一步地思考。在问题“近90天袁亚伟播放量平均值是多少“中,我们被问:\n“播放量平均值是多少”,所以我们需要column=[结算播放量]\n”袁亚伟“,所以我们需要column=[歌手名], cell values = ['袁亚伟'],所以有[歌手名:('袁亚伟')]\n”近90天“,所以我们需要column=[数据日期], cell values = [90],所以有[数据日期:(90)]",
|
||||
"schemaLinks":"[\"结算播放量\", \"歌手名\":(\"'袁亚伟'\"), \"数据日期\":(90)]",
|
||||
"sql":"select avg(结算播放量) from 艺人库 where 歌手名 = '袁亚伟' and datediff('day', 数据日期, '2023-08-31') <= 90 "
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-08-31",
|
||||
"tableName":"艺人库",
|
||||
"fieldsList":"[\"播放量层级\", \"播放量单调性\", \"播放量方差\", \"播放量突增类型\", \"播放量集中度\", \"歌手名\", \"歌手等级\", \"歌手类型\", \"歌手来源\", \"MPPM潮流人等级\", \"结算播放量\", \"运营播放量\", \"历史累计结算播放量\", \"有播放量歌曲数\", \"历史累计运营播放量\", \"付费用户结算播放量\", \"结算播放量占比\", \"运营播放份额\", \"免费用户结算播放占比\", \"完播量\", \"数据日期\"]",
|
||||
"question":"周倩倩近7天结算播放量总和是多少",
|
||||
"priorSchemaLinks":"['199509'->MPPM歌手ID]",
|
||||
"analysis":"让我们一步一步地思考。在问题“周倩倩近7天结算播放量总和是多少“中,我们被问:\n“结算播放量总和是多少”,所以我们需要column=[结算播放量]\n”周倩倩“,所以我们需要column=[歌手名], cell values = ['周倩倩'],所以有[歌手名:('周倩倩')]\n”近7天“,所以我们需要column=[数据日期], cell values = [7],所以有[数据日期:(7)]",
|
||||
"schemaLinks":"[\"结算播放量\", \"歌手名\":(\"'周倩倩'\"), \"数据日期\":(7)]",
|
||||
"sql":"select sum(结算播放量) from 艺人库 where 歌手名 = '周倩倩' and datediff('day', 数据日期, '2023-08-31') <= 7 "
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-09-14",
|
||||
"tableName":"内容库产品",
|
||||
"fieldsList":"[\"部门\", \"模块\", \"用户名\", \"访问次数\", \"访问人数\", \"访问时长\", \"数据日期\"]",
|
||||
"question":"内容库访问次数大于1k的部门是哪些",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“内容库访问次数大于1k的部门是哪些“中,我们被问:\n“部门是哪些”,所以我们需要column=[部门]\n”访问次数大于1k的“,所以我们需要column=[访问次数], cell values = [1000],所以有[访问次数:(1000)]",
|
||||
"schemaLinks":"[\"部门\", \"访问次数\":(1000)]",
|
||||
"sql":"select 部门 from 内容库产品 where 访问次数 > 1000"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-09-18",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"歌曲名\", \"MPPM歌手ID\", \"歌曲版本\", \"歌曲类型\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]",
|
||||
"question":"陈亿训唱的所有的播放量大于20k的孤勇者有哪些",
|
||||
"priorSchemaLinks":"['199509'->MPPM歌手ID, '1527123'->MPPM歌曲ID]",
|
||||
"analysis":"让我们一步一步地思考。在问题“陈亿训唱的所有的播放量大于20k的孤勇者有哪些“中,我们被问:\n“孤勇者有哪些”,所以我们需要column=[歌曲名], cell values = ['孤勇者'],所以有[歌曲名:('孤勇者')]\n”播放量大于20k的“,所以我们需要column=[结算播放量], cell values = [20000],所以有[结算播放量:(20000)]\n”陈亿训唱的“,所以我们需要column=[歌手名], cell values = ['陈亿训'],所以有[歌手名:('陈亿训')]",
|
||||
"schemaLinks":"[\"歌曲名\":(\"'孤勇者'\"), \"结算播放量\":(20000), \"歌手名\":(\"'陈亿训'\")]",
|
||||
"sql":"select 歌曲名 from 歌曲库 where 结算播放量 > 20000 and 歌手名 = '陈亿训' and 歌曲名 = '孤勇者'"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-09-18",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"歌曲名\", \"歌曲版本\", \"歌手名\", \"歌曲类型\", \"发布时间\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]",
|
||||
"question":"周洁轮去年发布的歌曲有哪些",
|
||||
"priorSchemaLinks":"['23109'->MPPM歌手ID]",
|
||||
"analysis":"让我们一步一步地思考。在问题“周洁轮去年发布的歌曲有哪些“中,我们被问:\n“歌曲有哪些”,所以我们需要column=[歌曲名]\n”去年发布的“,所以我们需要column=[发布时间], cell values = [1],所以有[发布时间:(1)]\n”周洁轮“,所以我们需要column=[歌手名], cell values = ['周洁轮'],所以有[歌手名:('周洁轮')]",
|
||||
"schemaLinks":"[\"歌曲名\", \"发布时间\":(1), \"歌手名\":(\"'周洁轮'\")]",
|
||||
"sql":"select 歌曲名 from 歌曲库 where datediff('year', 发布时间, '2023-09-18') <= 1 and 歌手名 = '周洁轮'"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-09-11",
|
||||
"tableName":"艺人库",
|
||||
"fieldsList":"[\"播放量层级\", \"播放量单调性\", \"播放量方差\", \"播放量突增类型\", \"播放量集中度\", \"歌手名\", \"歌手等级\", \"歌手类型\", \"歌手来源\", \"签约日期\", \"MPPM潮流人等级\", \"结算播放量\", \"运营播放量\", \"历史累计结算播放量\", \"有播放量歌曲数\", \"历史累计运营播放量\", \"付费用户结算播放量\", \"结算播放量占比\", \"运营播放份额\", \"免费用户结算播放占比\", \"完播量\", \"数据日期\"]",
|
||||
"question":"我想要近半年签约的播放量前十的歌手有哪些",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“我想要近半年签约的播放量前十的歌手“中,我们被问:\n“歌手有哪些”,所以我们需要column=[歌手名]\n”播放量前十的“,所以我们需要column=[结算播放量], cell values = [10],所以有[结算播放量:(10)]\n”近半年签约的“,所以我们需要column=[签约日期], cell values = [0.5],所以有[签约日期:(0.5)]",
|
||||
"schemaLinks":"[\"歌手名\", \"结算播放量\":(10), \"签约日期\":(0.5)]",
|
||||
"sql":"select 歌手名 from 艺人库 where datediff('year', 签约日期, '2023-09-11') <= 0.5 order by 结算播放量 desc limit 10"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-08-12",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"发行日期\", \"歌曲语言\", \"歌曲来源\", \"歌曲流派\", \"歌曲名\", \"歌曲版本\", \"歌曲类型\", \"发行时间\", \"数据日期\"]",
|
||||
"question":"最近一年发行的歌曲中,有哪些在近7天播放超过一千万的",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“最近一年发行的歌曲中,有哪些在近7天播放超过一千万的“中,我们被问:\n“发行的歌曲中,有哪些”,所以我们需要column=[歌曲名]\n”最近一年发行的“,所以我们需要column=[发行日期], cell values = [1],所以有[发行日期:(1)]\n”在近7天播放超过一千万的“,所以我们需要column=[数据日期, 结算播放量], cell values = [7, 10000000],所以有[数据日期:(7), 结算播放量:(10000000)]",
|
||||
"schemaLinks":"[\"歌曲名\", \"发行日期\":(1), \"数据日期\":(7), \"结算播放量\":(10000000)]",
|
||||
"sql":"select 歌曲名 from 歌曲库 where datediff('year', 发行日期, '2023-08-12') <= 1 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-08-12",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"发行日期\", \"歌曲语言\", \"歌曲来源\", \"歌曲流派\", \"歌曲名\", \"歌曲版本\", \"歌曲类型\", \"发行时间\", \"数据日期\"]",
|
||||
"question":"今年以来发行的歌曲中,有哪些在近7天播放超过一千万的",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“今年以来发行的歌曲中,有哪些在近7天播放超过一千万的“中,我们被问:\n“发行的歌曲中,有哪些”,所以我们需要column=[歌曲名]\n”今年以来发行的“,所以我们需要column=[发行日期], cell values = [0],所以有[发行日期:(0)]\n”在近7天播放超过一千万的“,所以我们需要column=[数据日期, 结算播放量], cell values = [7, 10000000],所以有[数据日期:(7), 结算播放量:(10000000)]",
|
||||
"schemaLinks":"[\"歌曲名\", \"发行日期\":(0), \"数据日期\":(7), \"结算播放量\":(10000000)]",
|
||||
"sql":"select 歌曲名 from 歌曲库 where datediff('year', 发行日期, '2023-08-12') <= 0 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-08-12",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"发行日期\", \"歌曲语言\", \"歌曲来源\", \"歌曲流派\", \"歌曲名\", \"歌曲版本\", \"歌曲类型\", \"发行时间\", \"数据日期\"]",
|
||||
"question":"2023年以来发行的歌曲中,有哪些在近7天播放超过一千万的",
|
||||
"priorSchemaLinks":"['514129144'->MPPM歌曲ID]",
|
||||
"analysis":"让我们一步一步地思考。在问题“2023年以来发行的歌曲中,有哪些在近7天播放超过一千万的“中,我们被问:\n“发行的歌曲中,有哪些”,所以我们需要column=[歌曲名]\n”2023年以来发行的“,所以我们需要column=[发行日期], cell values = ['2023-01-01'],所以有[发行日期:('2023-01-01')]\n”在近7天播放超过一千万的“,所以我们需要column=[数据日期, 结算播放量], cell values = [7, 10000000],所以有[数据日期:(7), 结算播放量:(10000000)]",
|
||||
"schemaLinks":"[\"歌曲名\", \"发行日期\":(\"'2023-01-01'\"), \"数据日期\":(7), \"结算播放量\":(10000000)]",
|
||||
"sql":"select 歌曲名 from 歌曲库 where 发行日期 >= '2023-01-01' and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-08-01",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"歌曲名\", \"歌曲版本\", \"歌手名\", \"歌曲类型\", \"发布时间\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]",
|
||||
"question":"周洁轮2023年6月之后发布的歌曲有哪些",
|
||||
"priorSchemaLinks":"['23109'->MPPM歌手ID]",
|
||||
"analysis":"让我们一步一步地思考。在问题“周洁轮2023年6月之后发布的歌曲有哪些“中,我们被问:\n“歌曲有哪些”,所以我们需要column=[歌曲名]\n”2023年6月之后发布的“,所以我们需要column=[发布时间], cell values = ['2023-06-01'],所以有[发布时间:('2023-06-01')]\n”周洁轮“,所以我们需要column=[歌手名], cell values = ['周洁轮'],所以有[歌手名:('周洁轮')]",
|
||||
"schemaLinks":"[\"歌曲名\", \"发布时间\":(\"'2023-06-01'\"), \"歌手名\":(\"'周洁轮'\")]",
|
||||
"sql":"select 歌曲名 from 歌曲库 where 发布时间 >= '2023-06-01' and 歌手名 = '周洁轮'"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-08-01",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"歌曲名\", \"歌曲版本\", \"歌手名\", \"歌曲类型\", \"发布时间\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]",
|
||||
"question":"邓梓琦在2023年1月5日之后发布的歌曲中,有哪些播放量大于500W的?",
|
||||
"priorSchemaLinks":"['2312311'->MPPM歌手ID]",
|
||||
"analysis":"让我们一步一步地思考。在问题“邓梓琦在2023年1月5日之后发布的歌曲中,有哪些播放量大于500W的?“中,我们被问:\n“歌曲中,有哪些”,所以我们需要column=[歌曲名]\n“播放量大于500W的”,所以我们需要column=[结算播放量], cell values = [5000000],所以有[结算播放量:(5000000)]\n”邓梓琦在2023年1月5日之后发布的“,所以我们需要column=[发布时间], cell values = ['2023-01-05'],所以有[发布时间:('2023-01-05')]\n”邓梓琦“,所以我们需要column=[歌手名], cell values = ['邓梓琦'],所以有[歌手名:('邓梓琦')]",
|
||||
"schemaLinks":"[\"歌曲名\", \"结算播放量\":(5000000), \"发布时间\":(\"'2023-01-05'\"), \"歌手名\":(\"'邓梓琦'\")]",
|
||||
"sql":"select 歌曲名 from 歌曲库 where 发布时间 >= '2023-01-05' and 歌手名 = '邓梓琦' and 结算播放量 > 5000000"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-09-17",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"歌曲名\", \"歌曲版本\", \"歌手名\", \"歌曲类型\", \"发布时间\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]",
|
||||
"question":"2023年6月以后,张亮英播放量大于200万的歌曲有哪些?",
|
||||
"priorSchemaLinks":"['45453'->MPPM歌手ID]",
|
||||
"analysis":"让我们一步一步地思考。在问题“2023年6月以后,张亮英播放量大于200万的歌曲有哪些?“中,我们被问:\n“播放量大于200万的”,所以我们需要column=[结算播放量], cell values = [2000000],所以有[结算播放量:(2000000)]\n”2023年6月以后,张亮英“,所以我们需要column=[数据日期, 歌手名], cell values = ['2023-06-01', '张亮英'],所以有[数据日期:('2023-06-01'), 歌手名:('张亮英')],\n”歌曲有哪些“,所以我们需要column=[歌曲名]",
|
||||
"schemaLinks":"[\"结算播放量\":(2000000), \"数据日期\":(\"'2023-06-01'\"), \"歌手名\":(\"'张亮英'\"), \"歌曲名\"]",
|
||||
"sql":"select 歌曲名 from 歌曲库 where 数据日期 >= '2023-06-01' and 歌手名 = '张亮英' and 结算播放量 > 2000000"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-08-16",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"歌曲名\", \"歌曲版本\", \"歌手名\", \"歌曲类型\", \"发布时间\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]",
|
||||
"question":"2021年6月以后发布的李雨纯的播放量大于20万的歌曲有哪些",
|
||||
"priorSchemaLinks":"['23109'->MPPM歌手ID]",
|
||||
"analysis":"让我们一步一步地思考。在问题“2021年6月以后发布的李雨纯的播放量大于20万的歌曲有哪些“中,我们被问:\n“播放量大于20万的”,所以我们需要column=[结算播放量], cell values = [200000],所以有[结算播放量:(200000)]\n”2021年6月以后发布的“,所以我们需要column=[发布时间], cell values = ['2021-06-01'],所以有[发布时间:('2021-06-01')]\n”李雨纯“,所以我们需要column=[歌手名], cell values = ['李雨纯'],所以有[歌手名:('李雨纯')]",
|
||||
"schemaLinks":"[\"结算播放量\":(200000), \"发布时间\":(\"'2021-06-01'\"), \"歌手名\":(\"'李雨纯'\")]",
|
||||
"sql":"select 歌曲名 from 歌曲库 where 发布时间 >= '2021-06-01' and 歌手名 = '李雨纯' and 结算播放量 > 200000"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-08-16",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"歌曲名\", \"歌曲版本\", \"歌手名\", \"歌曲类型\", \"发布时间\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]",
|
||||
"question":"刘锝桦在1992年4月2日到2020年5月2日之间发布的播放量大于20万的歌曲有哪些",
|
||||
"priorSchemaLinks":"['4234234'->MPPM歌手ID]",
|
||||
"analysis":"让我们一步一步地思考。在问题“刘锝桦在1992年4月2日到2020年5月2日之间发布的播放量大于20万的歌曲有哪些“中,我们被问:\n“播放量大于20万的”,所以我们需要column=[结算播放量], cell values = [200000],所以有[结算播放量:(200000)]\n”1992年4月2日到2020年5月2日之间发布的“, 所以我们需要column=[发布时间], cell values = ['1992-04-02', '2020-05-02'],所以有[发布时间:('1992-04-02', '2020-05-02')]\n”刘锝桦“,所以我们需要column=[歌手名], cell values = ['刘锝桦'],所以有[歌手名:('刘锝桦')]",
|
||||
"schemaLinks":"[\"结算播放量\":(200000), \"发布时间\":(\"'1992-04-02'\", \"'2020-05-02'\"), \"歌手名\":(\"'刘锝桦'\")]",
|
||||
"sql":"select 歌曲名 from 歌曲库 where 发布时间 >= '1992-04-02' and 发布时间 <= '2020-05-02' and 歌手名 = '刘锝桦' and 结算播放量 > 200000"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-09-04",
|
||||
"tableName":"内容库产品",
|
||||
"fieldsList":"[\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]",
|
||||
"question":"内容库近30天访问次数的平均数",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“内容库近30天访问次数的平均数“中,我们被问:\n“访问次数的平均数”,所以我们需要column=[访问次数]\n”内容库近30天“,所以我们需要column=[数据日期], cell values = [30],所以有[数据日期:(30)]",
|
||||
"schemaLinks":"[\"访问次数\", \"数据日期\":(30)]",
|
||||
"sql":"select avg(访问次数) from 内容库产品 where datediff('day', 数据日期, '2023-09-04') <= 30 "
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-09-04",
|
||||
"tableName":"内容库产品",
|
||||
"fieldsList":"[\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]",
|
||||
"question":"内容库近半年哪个月的访问次数汇总最高",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“内容库近半年哪个月的访问次数汇总最高“中,我们被问:\n“访问次数汇总最高”,所以我们需要column=[访问次数], cell values = [1],所以有[访问次数:(1)]\n”内容库近半年“,所以我们需要column=[数据日期], cell values = [0.5],所以有[数据日期:(0.5)]",
|
||||
"schemaLinks":"[\"访问次数\":(1), \"数据日期\":(0.5)]",
|
||||
"sql":"select MONTH(数据日期), sum(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期) order by sum(访问次数) desc limit 1"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-09-04",
|
||||
"tableName":"内容库产品",
|
||||
"fieldsList":"[\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]",
|
||||
"question":"内容库近半年每个月的平均访问次数",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“内容库近半年每个月的平均访问次数“中,我们被问:\n“每个月的平均访问次数”,所以我们需要column=[访问次数]\n”内容库近半年“,所以我们需要column=[数据日期], cell values = [0.5],所以有[数据日期:(0.5)]",
|
||||
"schemaLinks":"[\"访问次数\", \"数据日期\":(0.5)]",
|
||||
"sql":"select MONTH(数据日期), avg(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期)"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-09-10",
|
||||
"tableName":"内容库产品",
|
||||
"fieldsList":"[\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]",
|
||||
"question":"内容库 按部门统计访问次数 top10 的部门",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“内容库 按部门统计访问次数 top10 的部门“中,我们被问:\n“访问次数 top10 的部门”,所以我们需要column=[访问次数], cell values = [10],所以有[访问次数:(10)]\n”内容库 按部门统计“,所以我们需要column=[部门]",
|
||||
"schemaLinks":"[\"访问次数\":(10), \"部门\"]",
|
||||
"sql":"select 部门, sum(访问次数) from 内容库产品 group by 部门 order by sum(访问次数) desc limit 10"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-09-10",
|
||||
"tableName":"内容库产品",
|
||||
"fieldsList":"[\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]",
|
||||
"question":"超音速 近7个月,月度总访问量超过 2万的月份",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“超音速 近7个月,月度总访问量超过 2万的月份“中,我们被问:\n“月度总访问量超过 2万的月份”,所以我们需要column=[访问次数], cell values = [20000],所以有[访问次数:(20000)]\n”超音速 近7个月“,所以我们需要column=[数据日期], cell values = [7],所以有[数据日期:(7)]",
|
||||
"schemaLinks":"[\"访问次数\":(20000), \"数据日期\":(7)]",
|
||||
"sql":"select MONTH(数据日期) from 内容库产品 where datediff('day', 数据日期, '2023-09-10') <= 7 group by MONTH(数据日期) having sum(访问次数) > 20000"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-09-10",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"歌曲语言\", \"歌曲来源\", \"运营播放量\", \"播放量\", \"歌曲名\", \"结算播放量\", \"专辑名\", \"发布日期\", \"歌曲版本\", \"歌曲类型\", \"数据日期\"]",
|
||||
"question":"2022年7月到2023年7月之间发布到歌曲,按播放量取top 100,再按月粒度来统计近1年的运营播放量",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“2022年7月到2023年7月之间发布到歌曲,按播放量取top 100,再按月粒度来统计近1年的运营播放量“中,我们被问:\n“按月粒度来统计近1年的运营播放量”,所以我们需要column=[运营播放量, 数据日期], cell values = [1],所以有[运营播放量, 数据日期:(1)]\n”按播放量取top 100“,所以我们需要column=[播放量], cell values = [100],所以有[播放量:(100)]\n“2022年7月到2023年7月之间发布到歌曲”,所以我们需要column=[发布日期], cell values = ['2022-07-01', '2023-07-01'],所以有[发布日期:('2022-07-01', '2023-07-01')]",
|
||||
"schemaLinks":"[\"运营播放量\", \"数据日期\":(1), \"播放量\":(100), \"发布日期\":(\"'2022-07-01'\", \"'2023-07-01'\")]",
|
||||
"sql":"select MONTH(数据日期), sum(运营播放量) from (select 数据日期, 运营播放量 from 歌曲库 where 发布日期 >= '2022-07-01' and 发布日期 <= '2023-07-01' order by 播放量 desc limit 100) t where datediff('year', 数据日期, '2023-09-10') <= 1 group by MONTH(数据日期)"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-09-10",
|
||||
"tableName":"歌曲库",
|
||||
"fieldsList":"[\"歌曲语言\", \"歌曲来源\", \"运营播放量\", \"播放量\", \"歌曲名\", \"结算播放量\", \"专辑名\", \"发布日期\", \"歌曲版本\", \"歌曲类型\", \"数据日期\"]",
|
||||
"question":"2022年7月到2023年7月之间发布到歌曲,按播放量取top100,再按月粒度来统计近1年的运营播放量之和,筛选出其中运营播放量之和大于2k的月份",
|
||||
"priorSchemaLinks":"[]",
|
||||
"analysis":"让我们一步一步地思考。在问题“2022年7月到2023年7月之间发布到歌曲,按播放量取top100,再按月粒度来统计近1年的运营播放量之和,筛选出其中运营播放量之和大于2k的月份“中,我们被问:\n“筛选出其中运营播放量之和大于2k的月份”,所以我们需要column=[运营播放量], cell values = [2000],所以有[运营播放量:(2000)]\n”按月粒度来统计近1年的运营播放量之和“,所以我们需要column=[数据日期], cell values = [1],所以有[数据日期:(1)]\n”按播放量取top100“,所以我们需要column=[播放量], cell values = [100],所以有[播放量:(100)]\n”2022年7月到2023年7月之间发布到歌曲“,所以我们需要column=[发布日期], cell values = ['2022-07-01', '2023-07-01'],所以有[发布日期:('2022-07-01', '2023-07-01')]",
|
||||
"schemaLinks":"[\"运营播放量\":(2000), \"数据日期\":(1), \"播放量\":(100), \"发布日期\":(\"'2022-07-01'\", \"'2023-07-01'\")]",
|
||||
"sql":"select MONTH(数据日期), sum(运营播放量) from (select 数据日期, 运营播放量 from 歌曲库 where 发布日期 >= '2022-07-01' and 发布日期 <= '2023-07-01' order by 播放量 desc limit 100) t where datediff('year', 数据日期, '2023-09-10') <= 1 group by MONTH(数据日期) having sum(运营播放量) > 2000"
|
||||
},
|
||||
{
|
||||
"currentDate":"2023-11-01",
|
||||
"tableName":"营销月模型",
|
||||
"fieldsList":"[\"国家中文名\", \"机型类别\", \"销量\", \"数据日期\"]",
|
||||
"question":"今年智能机在哪个国家的销量之和最高",
|
||||
"priorSchemaLinks":"['智能机'->机型类别]",
|
||||
"analysis":"让我们一步一步地思考。在问题“今年智能机在哪个国家的销量之和最高“中,我们被问:\n“销量最高”,所以我们需要column=[销量], cell values = [1],所以有[销量:(1)]\n”今年“,所以我们需要column=[数据日期], cell values = ['2023-01-01', '2023-11-01'],所以有[数据日期:('2023-01-01', '2023-11-01')]\n”智能机“,所以我们需要column=[机型类别], cell values = ['智能机'],所以有[机型类别:('智能机')]",
|
||||
"schemaLinks":"[\"销量\":(1), \"数据日期\":(\"'2023-01-01'\", \"'2023-11-01'\"), \"机型类别\":(\"'智能机'\")]",
|
||||
"sql":"select 国家中文名, sum(销量) from 营销月模型 where 机型类别 = '智能机' and 数据日期 >= '2023-01-01' and 数据日期 <= '2023-11-01' group by 国家中文名 order by sum(销量) desc limit 1"
|
||||
}
|
||||
]
|
||||
250
launchers/standalone/src/main/resources/s2ql_examplar.json
Normal file
250
launchers/standalone/src/main/resources/s2ql_examplar.json
Normal file
@@ -0,0 +1,250 @@
|
||||
[
|
||||
{
|
||||
"question": "比较jackjchen和robinlee在内容库的访问次数",
|
||||
"questionAugmented": "比较jackjchen和robinlee在内容库的访问次数 (补充信息:’'jackjchen'‘是一个’用户名‘,’ 'robinlee'‘是一个’用户名‘。当前的日期是2020-12-01) (备注: )",
|
||||
"dbSchema": "Table: 内容库产品, Columns = [\"部门\", \"模块\", \"用户名\", \"访问次数\", \"访问人数\", \"访问时长\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 用户名, 访问次数 from 内容库产品 where 用户名 in ('jackjchen', 'robinlee')",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"比较jackjchen和robinlee在内容库的访问次数 (补充信息:’'jackjchen'‘是一个’用户名‘,’ 'robinlee'‘是一个’用户名‘。当前的日期是2020-12-01) (备注: )\", we are asked:\n\"’用户名‘,\" so we need column = [用户名]\n\"的访问次数 \" so we need column = [访问次数]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [jackjchen,robinlee]. So the Schema_links are:\nSchema_links: [用户名,访问次数,jackjchen,robinlee]",
|
||||
"generatedSchemaLinkings": "[用户名,访问次数,jackjchen,robinlee]"
|
||||
},
|
||||
{
|
||||
"question": "内容库近12个月访问人数 按部门",
|
||||
"questionAugmented": "内容库近12个月访问人数 按部门 (补充信息:。当前的日期是2022-11-06) (备注: )",
|
||||
"dbSchema": "Table: 内容库产品, Columns = [\"部门\", \"模块\", \"用户名\", \"访问次数\", \"访问人数\", \"访问时长\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 部门, 数据日期, 访问人数 from 内容库产品 where datediff('month', 数据日期, '2022-11-06') <= 12 ",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"内容库近12个月访问人数 按部门 (补充信息:。当前的日期是2022-11-06) (备注: )\", we are asked:\n\" 按部门 (\" so we need column = [部门]\n\"访问人数 按\" so we need column = [访问人数]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [12,month]. So the Schema_links are:\nSchema_links: [部门,访问人数,数据日期,12,month]",
|
||||
"generatedSchemaLinkings": "[部门,访问人数,数据日期,12,month]"
|
||||
},
|
||||
{
|
||||
"question": "内容库美术部、技术研发部的访问时长",
|
||||
"questionAugmented": "内容库美术部、技术研发部的访问时长 (补充信息:’'美术部'‘是一个’部门‘,’ '技术研发部'‘是一个’部门‘。当前的日期是2023-04-21) (备注: )",
|
||||
"dbSchema": "Table: 内容库产品, Columns = [\"部门\", \"模块\", \"用户名\", \"访问次数\", \"访问人数\", \"访问时长\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 部门, 访问时长 from 内容库产品 where 部门 in ('美术部', '技术研发部')",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"内容库美术部、技术研发部的访问时长 (补充信息:’'美术部'‘是一个’部门‘,’ '技术研发部'‘是一个’部门‘。当前的日期是2023-04-21) (备注: )\", we are asked:\n\"部门‘,’ \" so we need column = [部门]\n\"的访问时长 \" so we need column = [访问时长]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [美术部,技术研发部]. So the Schema_links are:\nSchema_links: [部门,访问时长,美术部,技术研发部]",
|
||||
"generatedSchemaLinkings": "[部门,访问时长,美术部,技术研发部]"
|
||||
},
|
||||
{
|
||||
"question": "近3天海田飞系MPPM结算播放份额",
|
||||
"questionAugmented": "近3天海田飞系MPPM结算播放份额 (补充信息:’'海田飞系'‘是一个’严选版权归属系‘。当前的日期是2023-08-21) (备注: )",
|
||||
"dbSchema": "Table: 严选, Columns = [\"严选版权归属系\", \"付费模式\", \"结算播放份额\", \"付费用户结算播放份额\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 严选版权归属系, 结算播放份额 from 严选 where 严选版权归属系 = '海田飞系' and datediff('day', 数据日期, '2023-08-21') <= 3 ",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"近3天海田飞系MPPM结算播放份额 (补充信息:’'海田飞系'‘是一个’严选版权归属系‘。当前的日期是2023-08-21) (备注: )\", we are asked:\n\"结算播放份额 \" so we need column = [结算播放份额]\n\"严选版权归属系\" so we need column = [严选版权归属系]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [海田飞系,3,day]. So the Schema_links are:\nSchema_links: [结算播放份额,严选版权归属系,数据日期,海田飞系,3,day]",
|
||||
"generatedSchemaLinkings": "[结算播放份额,严选版权归属系,数据日期,海田飞系,3,day]"
|
||||
},
|
||||
{
|
||||
"question": "对比近7天翻唱版和纯音乐的歌曲播放量",
|
||||
"questionAugmented": "对比近7天翻唱版和纯音乐的歌曲播放量 (补充信息:’'纯音乐'‘是一个’语种‘,’ '翻唱版'‘是一个’歌曲版本‘。当前的日期是2023-05-22) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"是否潮流人歌曲\", \"C音歌曲ID\", \"C音歌曲MID\", \"歌曲名\", \"歌曲版本\", \"语种\", \"歌曲类型\", \"翻唱类型\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"结算播放量\", \"运营播放量\", \"付费用户结算播放量\", \"历史累计结算播放量\", \"运营搜播量\", \"结算搜播量\", \"运营完播量\", \"运营推播量\", \"近7日复播率\", \"日均搜播量\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌曲版本, 语种, 结算播放量 from 歌曲库 where 歌曲版本 = '翻唱版' and 语种 = '纯音乐' and datediff('day', 数据日期, '2023-05-22') <= 7 ",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"对比近7天翻唱版和纯音乐的歌曲播放量 (补充信息:’'纯音乐'‘是一个’语种‘,’ '翻唱版'‘是一个’歌曲版本‘。当前的日期是2023-05-22) (备注: )\", we are asked:\n\"曲播放量 (\" so we need column = [结算播放量]\n\"’歌曲版本‘\" so we need column = [歌曲版本]\n\"语种‘,’ \" so we need column = [语种]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [7,翻唱版,纯音乐,day]. So the Schema_links are:\nSchema_links: [结算播放量,歌曲版本,语种,数据日期,7,翻唱版,纯音乐,day]",
|
||||
"generatedSchemaLinkings": "[结算播放量,歌曲版本,语种,数据日期,7,翻唱版,纯音乐,day]"
|
||||
},
|
||||
{
|
||||
"question": "对比一下陈拙悬、孟梅琦、赖媚韵的粉丝数",
|
||||
"questionAugmented": "对比一下陈拙悬、孟梅琦、赖媚韵的粉丝数 (补充信息:’'1527896'‘是一个’MPPM歌手ID‘,’ '1565463'‘是一个’MPPM歌手ID‘,’ '2141459'‘是一个’MPPM歌手ID‘。当前的日期是2023-05-31) (备注: )",
|
||||
"dbSchema": "Table: 艺人库, Columns = [\"上下架状态\", \"歌手名\", \"歌手等级\", \"歌手类型\", \"歌手来源\", \"MPPM潮流人等级\", \"活跃区域\", \"年龄\", \"歌手才能\", \"歌手风格\", \"粉丝数\", \"潮音粉丝数\", \"超声波粉丝数\", \"推博粉丝数\", \"超声波歌曲数\", \"在架歌曲数\", \"超声波分享数\", \"独占歌曲数\", \"超声波在架歌曲评论数\", \"有播放量歌曲数\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌手名, 粉丝数 from 艺人库 where 歌手名 in ('陈拙悬', '孟梅琦', '赖媚韵')",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"对比一下陈拙悬、孟梅琦、赖媚韵的粉丝数 (补充信息:’'1527896'‘是一个’MPPM歌手ID‘,’ '1565463'‘是一个’MPPM歌手ID‘,’ '2141459'‘是一个’MPPM歌手ID‘。当前的日期是2023-05-31) (备注: )\", we are asked:\n\"歌手ID‘,\" so we need column = [歌手名]\n\"的粉丝数 (\" so we need column = [粉丝数]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [陈拙悬,孟梅琦,赖媚韵]. So the Schema_links are:\nSchema_links: [歌手名,粉丝数,陈拙悬,孟梅琦,赖媚韵]",
|
||||
"generatedSchemaLinkings": "[歌手名,粉丝数,陈拙悬,孟梅琦,赖媚韵]"
|
||||
},
|
||||
{
|
||||
"question": "播放量大于1万的歌曲有多少",
|
||||
"questionAugmented": "播放量大于1万的歌曲有多少 (补充信息:。当前的日期是2023-07-31) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"歌曲名\", \"歌曲版本\", \"歌曲类型\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌曲名 from 歌曲库 where 结算播放量 > 10000",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"播放量大于1万的歌曲有多少 (补充信息:。当前的日期是2023-07-31) (备注: )\", we are asked:\n\"歌曲有多少 \" so we need column = [歌曲名]\n\"播放量大于1\" so we need column = [结算播放量]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [10000]. So the Schema_links are:\nSchema_links: [歌曲名,结算播放量,10000]",
|
||||
"generatedSchemaLinkings": "[歌曲名,结算播放量,10000]"
|
||||
},
|
||||
{
|
||||
"question": "内容库访问时长小于1小时,且来自美术部的用户是哪些",
|
||||
"questionAugmented": "内容库访问时长小于1小时,且来自美术部的用户是哪些 (补充信息:’'美术部'‘是一个’部门‘。当前的日期是2023-07-31) (备注: )",
|
||||
"dbSchema": "Table: 内容库产品, Columns = [\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 用户名 from 内容库产品 where 部门 = '美术部' and 访问时长 < 1",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"内容库访问时长小于1小时,且来自美术部的用户是哪些 (补充信息:’'美术部'‘是一个’部门‘。当前的日期是2023-07-31) (备注: )\", we are asked:\n\"术部的用户是\" so we need column = [用户名]\n\"一个’部门‘\" so we need column = [部门]\n\"访问时长小于\" so we need column = [访问时长]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [美术部,1]. So the Schema_links are:\nSchema_links: [用户名,部门,访问时长,美术部,1]",
|
||||
"generatedSchemaLinkings": "[用户名,部门,访问时长,美术部,1]"
|
||||
},
|
||||
{
|
||||
"question": "内容库pv最高的用户有哪些",
|
||||
"questionAugmented": "内容库pv最高的用户有哪些 (补充信息:。当前的日期是2023-08-31) (备注: )",
|
||||
"dbSchema": "Table: 内容库产品, Columns = [\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 用户名 from 内容库产品 order by 访问次数 desc limit 1",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"内容库pv最高的用户有哪些 (补充信息:。当前的日期是2023-08-31) (备注: )\", we are asked:\n\"用户有哪些 (\" so we need column = [用户名]\n\"最高的用户有\" so we need column = [访问次数]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [1]. So the Schema_links are:\nSchema_links: [用户名,访问次数,1]",
|
||||
"generatedSchemaLinkings": "[用户名,访问次数,1]"
|
||||
},
|
||||
{
|
||||
"question": "近90天袁亚伟播放量平均值是多少",
|
||||
"questionAugmented": "近90天袁亚伟播放量平均值是多少 (补充信息:’'152789226'‘是一个’MPPM歌手ID‘。当前的日期是2023-08-31) (备注: )",
|
||||
"dbSchema": "Table: 艺人库, Columns = [\"播放量层级\", \"播放量单调性\", \"播放量方差\", \"播放量突增类型\", \"播放量集中度\", \"歌手名\", \"歌手等级\", \"歌手类型\", \"歌手来源\", \"MPPM潮流人等级\", \"结算播放量\", \"运营播放量\", \"历史累计结算播放量\", \"有播放量歌曲数\", \"历史累计运营播放量\", \"付费用户结算播放量\", \"结算播放量占比\", \"运营播放份额\", \"免费用户结算播放占比\", \"完播量\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select avg(结算播放量) from 艺人库 where 歌手名 = '袁亚伟' and datediff('day', 数据日期, '2023-08-31') <= 90 ",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"近90天袁亚伟播放量平均值是多少 (补充信息:’'152789226'‘是一个’MPPM歌手ID‘。当前的日期是2023-08-31) (备注: )\", we are asked:\n\"播放量平均值\" so we need column = [结算播放量]\n\"歌手ID‘。\" so we need column = [歌手名]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [袁亚伟,90,day]. So the Schema_links are:\nSchema_links: [结算播放量,歌手名,数据日期,袁亚伟,90,day]",
|
||||
"generatedSchemaLinkings": "[结算播放量,歌手名,数据日期,袁亚伟,90,day]"
|
||||
},
|
||||
{
|
||||
"question": "周倩倩近7天结算播放量总和是多少",
|
||||
"questionAugmented": "周倩倩近7天结算播放量总和是多少 (补充信息:’'199509'‘是一个’MPPM歌手ID‘。当前的日期是2023-08-31) (备注: )",
|
||||
"dbSchema": "Table: 艺人库, Columns = [\"播放量层级\", \"播放量单调性\", \"播放量方差\", \"播放量突增类型\", \"播放量集中度\", \"歌手名\", \"歌手等级\", \"歌手类型\", \"歌手来源\", \"MPPM潮流人等级\", \"结算播放量\", \"运营播放量\", \"历史累计结算播放量\", \"有播放量歌曲数\", \"历史累计运营播放量\", \"付费用户结算播放量\", \"结算播放量占比\", \"运营播放份额\", \"免费用户结算播放占比\", \"完播量\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select sum(结算播放量) from 艺人库 where 歌手名 = '周倩倩' and datediff('day', 数据日期, '2023-08-31') <= 7 ",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"周倩倩近7天结算播放量总和是多少 (补充信息:’'199509'‘是一个’MPPM歌手ID‘。当前的日期是2023-08-31) (备注: )\", we are asked:\n\"结算播放量总\" so we need column = [结算播放量]\n\"歌手ID‘。\" so we need column = [歌手名]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [周倩倩,7,day]. So the Schema_links are:\nSchema_links: [结算播放量,歌手名,数据日期,周倩倩,7,day]",
|
||||
"generatedSchemaLinkings": "[结算播放量,歌手名,数据日期,周倩倩,7,day]"
|
||||
},
|
||||
{
|
||||
"question": "内容库访问次数大于1k的部门是哪些",
|
||||
"questionAugmented": "内容库访问次数大于1k的部门是哪些 (补充信息:。当前的日期是2023-09-14) (备注: )",
|
||||
"dbSchema": "Table: 内容库产品, Columns = [\"部门\", \"模块\", \"用户名\", \"访问次数\", \"访问人数\", \"访问时长\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 部门 from 内容库产品 where 访问次数 > 1000",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"内容库访问次数大于1k的部门是哪些 (补充信息:。当前的日期是2023-09-14) (备注: )\", we are asked:\n\"访问次数大于\" so we need column = [访问次数]\n\"部门是哪些 \" so we need column = [部门]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [1000]. So the Schema_links are:\nSchema_links: [访问次数,部门,1000]",
|
||||
"generatedSchemaLinkings": "[访问次数,部门,1000]"
|
||||
},
|
||||
{
|
||||
"question": "陈亿训唱的所有的播放量大于20k的孤勇者有哪些",
|
||||
"questionAugmented": "陈亿训唱的所有的播放量大于20k的孤勇者有哪些 (补充信息:’'199509'‘是一个’MPPM歌手ID‘,’ '1527123'‘是一个’MPPM歌曲ID‘。当前的日期是2023-09-18) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"歌曲名\", \"MPPM歌手ID\", \"歌曲版本\", \"歌曲类型\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌曲名 from 歌曲库 where 结算播放量 > 20000 and 歌手名 = '陈亿训' and 歌曲名 = '孤勇者'",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"陈亿训唱的所有的播放量大于20k的孤勇者有哪些 (补充信息:’'199509'‘是一个’MPPM歌手ID‘,’ '1527123'‘是一个’MPPM歌曲ID‘。当前的日期是2023-09-18) (备注: )\", we are asked:\n\"歌曲ID‘。\" so we need column = [歌曲名]\n\"的所有的播放量\" so we need column = [结算播放量]\n\"歌手ID‘,\" so we need column = [歌手名]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [孤勇者,20000,陈亿训]. So the Schema_links are:\nSchema_links: [歌曲名,结算播放量,歌手名,孤勇者,20000,陈亿训]",
|
||||
"generatedSchemaLinkings": "[歌曲名,结算播放量,歌手名,孤勇者,20000,陈亿训]"
|
||||
},
|
||||
{
|
||||
"question": "周洁轮去年发布的歌曲有哪些",
|
||||
"questionAugmented": "周洁轮去年发布的歌曲有哪些 (补充信息:’'23109'‘是一个’MPPM歌手ID‘。当前的日期是2023-09-18) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"歌曲名\", \"歌曲版本\", \"歌手名\", \"歌曲类型\", \"发布时间\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌曲名 from 歌曲库 where datediff('year', 发布时间, '2023-09-18') <= 1 and 歌手名 = '周洁轮'",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"周洁轮去年发布的歌曲有哪些 (补充信息:’'23109'‘是一个’MPPM歌手ID‘。当前的日期是2023-09-18) (备注: )\", we are asked:\n\"歌曲有哪些 \" so we need column = [歌曲名]\n\"歌手ID‘。\" so we need column = [歌手名]\n\"发布的歌曲有\" so we need column = [发布时间]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [1,周洁轮,year]. So the Schema_links are:\nSchema_links: [歌曲名,歌手名,发布时间,1,周洁轮,year]",
|
||||
"generatedSchemaLinkings": "[歌曲名,歌手名,发布时间,1,周洁轮,year]"
|
||||
},
|
||||
{
|
||||
"question": "我想要近半年签约的播放量前十的歌手有哪些",
|
||||
"questionAugmented": "我想要近半年签约的播放量前十的歌手有哪些 (补充信息:。当前的日期是2023-09-11) (备注: )",
|
||||
"dbSchema": "Table: 艺人库, Columns = [\"播放量层级\", \"播放量单调性\", \"播放量方差\", \"播放量突增类型\", \"播放量集中度\", \"歌手名\", \"歌手等级\", \"歌手类型\", \"歌手来源\", \"签约日期\", \"MPPM潮流人等级\", \"结算播放量\", \"运营播放量\", \"历史累计结算播放量\", \"有播放量歌曲数\", \"历史累计运营播放量\", \"付费用户结算播放量\", \"结算播放量占比\", \"运营播放份额\", \"免费用户结算播放占比\", \"完播量\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌手名 from 艺人库 where datediff('year', 签约日期, '2023-09-11') <= 0.5 order by 结算播放量 desc limit 10",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"我想要近半年签约的播放量前十的歌手有哪些 (补充信息:。当前的日期是2023-09-11) (备注: )\", we are asked:\n\"歌手有哪些 \" so we need column = [歌手名]\n\"签约的播放量\" so we need column = [结算播放量]\n\"签约的播放量\" so we need column = [签约日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [10,0.5,year]. So the Schema_links are:\nSchema_links: [歌手名,结算播放量,签约日期,10,0.5,year]",
|
||||
"generatedSchemaLinkings": "[歌手名,结算播放量,签约日期,10,0.5,year]"
|
||||
},
|
||||
{
|
||||
"question": "最近一年发行的歌曲中,有哪些在近7天播放超过一千万的",
|
||||
"questionAugmented": "最近一年发行的歌曲中,有哪些在近7天播放超过一千万的 (补充信息:。当前的日期是2023-08-12) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"发行日期\", \"歌曲语言\", \"歌曲来源\", \"歌曲流派\", \"歌曲名\", \"歌曲版本\", \"歌曲类型\", \"发行时间\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌曲名 from 歌曲库 where datediff('year', 发行日期, '2023-08-12') <= 1 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"最近一年发行的歌曲中,有哪些在近7天播放超过一千万的 (补充信息:。当前的日期是2023-08-12) (备注: )\", we are asked:\n\"的歌曲中,有\" so we need column = [歌曲名]\n\"天播放超过一\" so we need column = [结算播放量]\n\"最近一年发行\" so we need column = [发行日期]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [10000000,1,7,year,day]. So the Schema_links are:\nSchema_links: [歌曲名,结算播放量,发行日期,数据日期,10000000,1,7,year,day]",
|
||||
"generatedSchemaLinkings": "[歌曲名,结算播放量,发行日期,数据日期,10000000,1,7,year,day]"
|
||||
},
|
||||
{
|
||||
"question": "今年以来发行的歌曲中,有哪些在近7天播放超过一千万的",
|
||||
"questionAugmented": "今年以来发行的歌曲中,有哪些在近7天播放超过一千万的 (补充信息:。当前的日期是2023-08-12) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"发行日期\", \"歌曲语言\", \"歌曲来源\", \"歌曲流派\", \"歌曲名\", \"歌曲版本\", \"歌曲类型\", \"发行时间\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌曲名 from 歌曲库 where datediff('year', 发行日期, '2023-08-12') <= 0 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"今年以来发行的歌曲中,有哪些在近7天播放超过一千万的 (补充信息:。当前的日期是2023-08-12) (备注: )\", we are asked:\n\"的歌曲中,有\" so we need column = [歌曲名]\n\"天播放超过一\" so we need column = [结算播放量]\n\"年以来发行的\" so we need column = [发行日期]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [10000000,0,7,year,day]. So the Schema_links are:\nSchema_links: [歌曲名,结算播放量,发行日期,数据日期,10000000,0,7,year,day]",
|
||||
"generatedSchemaLinkings": "[歌曲名,结算播放量,发行日期,数据日期,10000000,0,7,year,day]"
|
||||
},
|
||||
{
|
||||
"question": "2023年以来发行的歌曲中,有哪些在近7天播放超过一千万的",
|
||||
"questionAugmented": "2023年以来发行的歌曲中,有哪些在近7天播放超过一千万的 (补充信息:’'514129144'‘是一个’MPPM歌曲ID‘。当前的日期是2023-08-12) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"发行日期\", \"歌曲语言\", \"歌曲来源\", \"歌曲流派\", \"歌曲名\", \"歌曲版本\", \"歌曲类型\", \"发行时间\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌曲名 from 歌曲库 where 发行日期 >= '2023-01-01' and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"2023年以来发行的歌曲中,有哪些在近7天播放超过一千万的 (补充信息:’'514129144'‘是一个’MPPM歌曲ID‘。当前的日期是2023-08-12) (备注: )\", we are asked:\n\"的歌曲中,有\" so we need column = [歌曲名]\n\"天播放超过一\" so we need column = [结算播放量]\n\"年以来发行的\" so we need column = [发行日期]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [10000000,2023-01-01,7,day]. So the Schema_links are:\nSchema_links: [歌曲名,结算播放量,发行日期,数据日期,10000000,2023-01-01,7,day]",
|
||||
"generatedSchemaLinkings": "[歌曲名,结算播放量,发行日期,数据日期,10000000,2023-01-01,7,day]"
|
||||
},
|
||||
{
|
||||
"question": "周洁轮2023年6月之后发布的歌曲有哪些",
|
||||
"questionAugmented": "周洁轮2023年6月之后发布的歌曲有哪些 (补充信息:’'23109'‘是一个’MPPM歌手ID‘。当前的日期是2023-08-01) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"歌曲名\", \"歌曲版本\", \"歌手名\", \"歌曲类型\", \"发布时间\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌曲名 from 歌曲库 where 发布时间 >= '2023-06-01' and 歌手名 = '周洁轮'",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"周洁轮2023年6月之后发布的歌曲有哪些 (补充信息:’'23109'‘是一个’MPPM歌手ID‘。当前的日期是2023-08-01) (备注: )\", we are asked:\n\"歌曲有哪些 \" so we need column = [歌曲名]\n\"歌手ID‘。\" so we need column = [歌手名]\n\"月之后发布的\" so we need column = [发布时间]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [2023-06-01,周洁轮]. So the Schema_links are:\nSchema_links: [歌曲名,歌手名,发布时间,2023-06-01,周洁轮]",
|
||||
"generatedSchemaLinkings": "[歌曲名,歌手名,发布时间,2023-06-01,周洁轮]"
|
||||
},
|
||||
{
|
||||
"question": "邓梓琦在2023年1月5日之后发布的歌曲中,有哪些播放量大于500W的?",
|
||||
"questionAugmented": "邓梓琦在2023年1月5日之后发布的歌曲中,有哪些播放量大于500W的? (补充信息:’'2312311'‘是一个’MPPM歌手ID‘。当前的日期是2023-08-01) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"歌曲名\", \"歌曲版本\", \"歌手名\", \"歌曲类型\", \"发布时间\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌曲名 from 歌曲库 where 发布时间 >= '2023-01-05' and 歌手名 = '邓梓琦' and 结算播放量 > 5000000",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"邓梓琦在2023年1月5日之后发布的歌曲中,有哪些播放量大于500W的? (补充信息:’'2312311'‘是一个’MPPM歌手ID‘。当前的日期是2023-08-01) (备注: )\", we are asked:\n\"的歌曲中,有\" so we need column = [歌曲名]\n\"中,有哪些播放量\" so we need column = [结算播放量]\n\"歌手ID‘。\" so we need column = [歌手名]\n\"日之后发布的\" so we need column = [发布时间]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [5000000,2023-01-05,邓梓琦]. So the Schema_links are:\nSchema_links: [歌曲名,结算播放量,歌手名,发布时间,5000000,2023-01-05,邓梓琦]",
|
||||
"generatedSchemaLinkings": "[歌曲名,结算播放量,歌手名,发布时间,5000000,2023-01-05,邓梓琦]"
|
||||
},
|
||||
{
|
||||
"question": "2023年6月以后,张亮英播放量大于200万的歌曲有哪些?",
|
||||
"questionAugmented": "2023年6月以后,张亮英播放量大于200万的歌曲有哪些? (补充信息:’'45453'‘是一个’MPPM歌手ID‘。当前的日期是2023-09-17) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"歌曲名\", \"歌曲版本\", \"歌手名\", \"歌曲类型\", \"发布时间\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌曲名 from 歌曲库 where 数据日期 >= '2023-06-01' and 歌手名 = '张亮英' and 结算播放量 > 2000000",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"2023年6月以后,张亮英播放量大于200万的歌曲有哪些? (补充信息:’'45453'‘是一个’MPPM歌手ID‘。当前的日期是2023-09-17) (备注: )\", we are asked:\n\"的歌曲有哪些? (\" so we need column = [歌曲名]\n\"后,张亮英播放量大\" so we need column = [结算播放量]\n\"歌手ID‘。\" so we need column = [歌手名]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [2000000,2023-06-01,张亮英]. So the Schema_links are:\nSchema_links: [歌曲名,结算播放量,歌手名,数据日期,2000000,2023-06-01,张亮英]",
|
||||
"generatedSchemaLinkings": "[歌曲名,结算播放量,歌手名,数据日期,2000000,2023-06-01,张亮英]"
|
||||
},
|
||||
{
|
||||
"question": "2021年6月以后发布的李雨纯的播放量大于20万的歌曲有哪些",
|
||||
"questionAugmented": "2021年6月以后发布的李雨纯的播放量大于20万的歌曲有哪些 (补充信息:’'23109'‘是一个’MPPM歌手ID‘。当前的日期是2023-08-16) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"歌曲名\", \"歌曲版本\", \"歌手名\", \"歌曲类型\", \"发布时间\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌曲名 from 歌曲库 where 发布时间 >= '2021-06-01' and 歌手名 = '李雨纯' and 结算播放量 > 200000",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"2021年6月以后发布的李雨纯的播放量大于20万的歌曲有哪些 (补充信息:’'23109'‘是一个’MPPM歌手ID‘。当前的日期是2023-08-16) (备注: )\", we are asked:\n\"歌曲有哪些 \" so we need column = [歌曲名]\n\"的播放量大于\" so we need column = [结算播放量]\n\"歌手ID‘。\" so we need column = [歌手名]\n\"月以后发布的\" so we need column = [发布时间]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [200000,2021-06-01,李雨纯]. So the Schema_links are:\nSchema_links: [歌曲名,结算播放量,歌手名,发布时间,200000,2021-06-01,李雨纯]",
|
||||
"generatedSchemaLinkings": "[歌曲名,结算播放量,歌手名,发布时间,200000,2021-06-01,李雨纯]"
|
||||
},
|
||||
{
|
||||
"question": "刘锝桦在1992年4月2日到2020年5月2日之间发布的播放量大于20万的歌曲有哪些",
|
||||
"questionAugmented": "刘锝桦在1992年4月2日到2020年5月2日之间发布的播放量大于20万的歌曲有哪些 (补充信息:’'4234234'‘是一个’MPPM歌手ID‘。当前的日期是2023-08-16) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"歌曲名\", \"歌曲版本\", \"歌手名\", \"歌曲类型\", \"发布时间\", \"MPPM歌曲ID\", \"是否严选窄口径歌曲\", \"是否严选宽口径歌曲\", \"是否潮流人歌曲\", \"超声波歌曲ID\", \"C音歌曲ID\", \"C音歌曲MID\", \"结算播放量\", \"运营播放量\", \"分享量\", \"收藏量\", \"运营搜播量\", \"结算搜播量\", \"拉新用户数\", \"拉活用户数\", \"分享率\", \"结算播放份额\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 歌曲名 from 歌曲库 where 发布时间 >= '1992-04-02' and 发布时间 <= '2020-05-02' and 歌手名 = '刘锝桦' and 结算播放量 > 200000",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"刘锝桦在1992年4月2日到2020年5月2日之间发布的播放量大于20万的歌曲有哪些 (补充信息:’'4234234'‘是一个’MPPM歌手ID‘。当前的日期是2023-08-16) (备注: )\", we are asked:\n\"歌曲有哪些 \" so we need column = [歌曲名]\n\"发布的播放量\" so we need column = [结算播放量]\n\"歌手ID‘。\" so we need column = [歌手名]\n\"日之间发布的\" so we need column = [发布时间]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [200000,刘锝桦,1992-04-02,2020-05-02]. So the Schema_links are:\nSchema_links: [歌曲名,结算播放量,歌手名,发布时间,200000,刘锝桦,1992-04-02,2020-05-02]",
|
||||
"generatedSchemaLinkings": "[歌曲名,结算播放量,歌手名,发布时间,200000,刘锝桦,1992-04-02,2020-05-02]"
|
||||
},
|
||||
{
|
||||
"question": "内容库近30天访问次数的平均数",
|
||||
"questionAugmented": "内容库近30天访问次数的平均数 (补充信息:。当前的日期是2023-09-04) (备注: )",
|
||||
"dbSchema": "Table: 内容库产品, Columns = [\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select avg(访问次数) from 内容库产品 where datediff('day', 数据日期, '2023-09-04') <= 30 ",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"内容库近30天访问次数的平均数 (补充信息:。当前的日期是2023-09-04) (备注: )\", we are asked:\n\"访问次数的平均数\" so we need column = [访问次数]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [30,day]. So the Schema_links are:\nSchema_links: [访问次数,数据日期,30,day]",
|
||||
"generatedSchemaLinkings": "[访问次数,数据日期,30,day]"
|
||||
},
|
||||
{
|
||||
"question": "内容库近半年哪个月的访问次数汇总最高",
|
||||
"questionAugmented": "内容库近半年哪个月的访问次数汇总最高 (补充信息:。当前的日期是2023-09-04) (备注: )",
|
||||
"dbSchema": "Table: 内容库产品, Columns = [\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select MONTH(数据日期), sum(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期) order by sum(访问次数) desc limit 1",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"内容库近半年哪个月的访问次数汇总最高 (补充信息:。当前的日期是2023-09-04) (备注: )\", we are asked:\n\"的访问次数汇总\" so we need column = [访问次数]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [1,0.5,year]. So the Schema_links are:\nSchema_links: [访问次数,数据日期,1,0.5,year]",
|
||||
"generatedSchemaLinkings": "[访问次数,数据日期,1,0.5,year]"
|
||||
},
|
||||
{
|
||||
"question": "内容库近半年每个月的平均访问次数",
|
||||
"questionAugmented": "内容库近半年每个月的平均访问次数 (补充信息:。当前的日期是2023-09-04) (备注: )",
|
||||
"dbSchema": "Table: 内容库产品, Columns = [\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select MONTH(数据日期), avg(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期)",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"内容库近半年每个月的平均访问次数 (补充信息:。当前的日期是2023-09-04) (备注: )\", we are asked:\n\"访问次数 (\" so we need column = [访问次数]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [0.5,year]. So the Schema_links are:\nSchema_links: [访问次数,数据日期,0.5,year]",
|
||||
"generatedSchemaLinkings": "[访问次数,数据日期,0.5,year]"
|
||||
},
|
||||
{
|
||||
"question": "内容库 按部门统计访问次数 top10 的部门",
|
||||
"questionAugmented": "内容库 按部门统计访问次数 top10 的部门 (补充信息:。当前的日期是2023-09-10) (备注: )",
|
||||
"dbSchema": "Table: 内容库产品, Columns = [\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 部门, sum(访问次数) from 内容库产品 group by 部门 order by sum(访问次数) desc limit 10",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"内容库 按部门统计访问次数 top10 的部门 (补充信息:。当前的日期是2023-09-10) (备注: )\", we are asked:\n\"计访问次数 \" so we need column = [访问次数]\n\" 的部门 (\" so we need column = [部门]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [10]. So the Schema_links are:\nSchema_links: [访问次数,部门,10]",
|
||||
"generatedSchemaLinkings": "[访问次数,部门,10]"
|
||||
},
|
||||
{
|
||||
"question": "超音速 近7个月,月度总访问量超过 2万的月份",
|
||||
"questionAugmented": "超音速 近7个月,月度总访问量超过 2万的月份 (补充信息:。当前的日期是2023-09-10) (备注: )",
|
||||
"dbSchema": "Table: 内容库产品, Columns = [\"用户名\", \"部门\", \"模块\", \"访问时长\", \"访问次数\", \"访问人数\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select MONTH(数据日期) from 内容库产品 where datediff('month', 数据日期, '2023-09-10') <= 7 group by MONTH(数据日期) having sum(访问次数) > 20000",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"超音速 近7个月,月度总访问量超过 2万的月份 (补充信息:。当前的日期是2023-09-10) (备注: )\", we are asked:\n\"访问量超过 \" so we need column = [访问次数]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [7,20000,month]. So the Schema_links are:\nSchema_links: [访问次数,数据日期,7,20000,month]",
|
||||
"generatedSchemaLinkings": "[访问次数,数据日期,7,20000,month]"
|
||||
},
|
||||
{
|
||||
"question": "2022年7月到2023年7月之间发布到歌曲,按播放量取top 100,再按月粒度来统计近1年的运营播放量",
|
||||
"questionAugmented": "2022年7月到2023年7月之间发布到歌曲,按播放量取top 100,再按月粒度来统计近1年的运营播放量 (补充信息:。当前的日期是2023-09-10) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"歌曲语言\", \"歌曲来源\", \"运营播放量\", \"播放量\", \"歌曲名\", \"结算播放量\", \"专辑名\", \"发布日期\", \"歌曲版本\", \"歌曲类型\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select MONTH(数据日期), sum(运营播放量) from (select 数据日期, 运营播放量 from 歌曲库 where 发布日期 >= '2022-07-01' and 发布日期 <= '2023-07-01' order by 播放量 desc limit 100) t where datediff('year', 数据日期, '2023-09-10') <= 1 group by MONTH(数据日期)",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"2022年7月到2023年7月之间发布到歌曲,按播放量取top 100,再按月粒度来统计近1年的运营播放量 (补充信息:。当前的日期是2023-09-10) (备注: )\", we are asked:\n\"月之间发布到\" so we need column = [发布日期]\n\"运营播放量 \" so we need column = [播放量]\n\"运营播放量 \" so we need column = [运营播放量]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [1,year,100,2022-07-01,2023-07-01]. So the Schema_links are:\nSchema_links: [发布日期,播放量,运营播放量,数据日期,1,year,100,2022-07-01,2023-07-01]",
|
||||
"generatedSchemaLinkings": "[发布日期,播放量,运营播放量,数据日期,1,year,100,2022-07-01,2023-07-01]"
|
||||
},
|
||||
{
|
||||
"question": "2022年7月到2023年7月之间发布到歌曲,按播放量取top100,再按月粒度来统计近1年的运营播放量之和,筛选出其中运营播放量之和大于2k的月份",
|
||||
"questionAugmented": "2022年7月到2023年7月之间发布到歌曲,按播放量取top100,再按月粒度来统计近1年的运营播放量之和,筛选出其中运营播放量之和大于2k的月份 (补充信息:。当前的日期是2023-09-10) (备注: )",
|
||||
"dbSchema": "Table: 歌曲库, Columns = [\"歌曲语言\", \"歌曲来源\", \"运营播放量\", \"播放量\", \"歌曲名\", \"结算播放量\", \"专辑名\", \"发布日期\", \"歌曲版本\", \"歌曲类型\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select MONTH(数据日期), sum(运营播放量) from (select 数据日期, 运营播放量 from 歌曲库 where 发布日期 >= '2022-07-01' and 发布日期 <= '2023-07-01' order by 播放量 desc limit 100) t where datediff('year', 数据日期, '2023-09-10') <= 1 group by MONTH(数据日期) having sum(运营播放量) > 2000",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"2022年7月到2023年7月之间发布到歌曲,按播放量取top100,再按月粒度来统计近1年的运营播放量之和,筛选出其中运营播放量之和大于2k的月份 (补充信息:。当前的日期是2023-09-10) (备注: )\", we are asked:\n\"月之间发布到\" so we need column = [发布日期]\n\"播放量之和,\" so we need column = [播放量]\n\"运营播放量之\" so we need column = [运营播放量]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [1,2000,year,100,2022-07-01,2023-07-01]. So the Schema_links are:\nSchema_links: [发布日期,播放量,运营播放量,数据日期,1,2000,year,100,2022-07-01,2023-07-01]",
|
||||
"generatedSchemaLinkings": "[发布日期,播放量,运营播放量,数据日期,1,2000,year,100,2022-07-01,2023-07-01]"
|
||||
},
|
||||
{
|
||||
"question": "今年智能机在哪个国家的销量之和最高",
|
||||
"questionAugmented": "今年智能机在哪个国家的销量之和最高 (补充信息:’'智能机'‘是一个’机型类别‘。当前的日期是2023-11-01) (备注: )",
|
||||
"dbSchema": "Table: 营销月模型, Columns = [\"国家中文名\", \"机型类别\", \"销量\", \"数据日期\"]\nForeign_keys: []",
|
||||
"sql": "select 国家中文名, sum(销量) from 营销月模型 where 机型类别 = '智能机' and 数据日期 >= '2023-01-01' and 数据日期 <= '2023-11-01' group by 国家中文名 order by sum(销量) desc limit 1",
|
||||
"generatedSchemaLinkingCoT": "Let’s think step by step. In the question \"今年智能机在哪个国家的销量之和最高 (补充信息:’'智能机'‘是一个’机型类别‘。当前的日期是2023-11-01) (备注: )\", we are asked:\n\"国家的销量之和\" so we need column = [国家中文名]\n\"个国家的销量\" so we need column = [销量]\n\"’机型类别‘\" so we need column = [机型类别]\n\"当前的日期是\" so we need column = [数据日期]\nBased on the tables, columns, and Foreign_keys, The set of possible cell values are = [1,2023-11-01,智能机,2023-01-01]. So the Schema_links are:\nSchema_links: [国家中文名,销量,机型类别,数据日期,1,2023-11-01,智能机,2023-01-01]",
|
||||
"generatedSchemaLinkings": "[国家中文名,销量,机型类别,数据日期,1,2023-11-01,智能机,2023-01-01]"
|
||||
}
|
||||
]
|
||||
Reference in New Issue
Block a user