Allow user to config examples and number of examples used by text2sql in middle of run (#85)

This commit is contained in:
codescracker
2023-09-13 17:24:12 +08:00
committed by GitHub
parent c38507d50c
commit 545fb139ee
13 changed files with 303 additions and 61 deletions

1
.gitignore vendored
View File

@@ -15,4 +15,5 @@ assembly/runtime/*
/assembly/deploy /assembly/deploy
/runtime /runtime
**/.flattened-pom.xml **/.flattened-pom.xml
chm_db/
__pycache__/ __pycache__/

View File

@@ -0,0 +1,12 @@
#!/usr/bin/env bash
llm_host=$1
llm_port=$2
baseDir=$(cd "$binDir/.." && pwd -P)
cd $baseDir/llm/sql
${python_path} examples_reload_run.py ${llm_port} ${llm_host}

View File

@@ -10,7 +10,7 @@ from typing import Any, List, Mapping, Optional, Union
from fastapi import FastAPI, HTTPException from fastapi import FastAPI, HTTPException
from sql.run import query2sql from sql.run import text2sql_agent
from preset_retrieval.run import preset_query_retrieval_run, collection as preset_query_collection from preset_retrieval.run import preset_query_retrieval_run, collection as preset_query_collection
from preset_retrieval.preset_query_db import (add2preset_query_collection, update_preset_query_collection, from preset_retrieval.preset_query_db import (add2preset_query_collection, update_preset_query_collection,
@@ -46,12 +46,30 @@ async def din_query2sql(query_body: Mapping[str, Any]):
else: else:
linking = query_body['linking'] linking = query_body['linking']
resp = query2sql(query_text=query_text, resp = text2sql_agent.query2sql(query_text=query_text,
schema=schema, current_date=current_date, linking=linking) schema=schema, current_date=current_date, linking=linking)
return resp return resp
@app.post("/query2sql_setting_update/")
async def query2sql_setting_update(query_body: Mapping[str, Any]):
if 'sqlExamplars' not in query_body:
raise HTTPException(status_code=400,
detail="sqlExamplars is not in query_body")
else:
sql_examplars = query_body['sqlExamplars']
if 'exampleNums' not in query_body:
raise HTTPException(status_code=400, detail="exampleNums is not in query_body")
else:
example_nums = query_body['exampleNums']
text2sql_agent.update_examples(sql_examplars=sql_examplars, example_nums=example_nums)
return "success"
@app.post("/preset_query_retrival/") @app.post("/preset_query_retrival/")
async def preset_query_retrival(query_text_list: List[str], n_results: int = 5): async def preset_query_retrival(query_text_list: List[str], n_results: int = 5):
parsed_retrieval_res_format = preset_query_retrieval_run(preset_query_collection, query_text_list, n_results) parsed_retrieval_res_format = preset_query_retrieval_run(preset_query_collection, query_text_list, n_results)

View File

@@ -292,5 +292,57 @@ examplars= [
基于table和columns可能的cell values 是 = ['刘锝桦', 1992, 4, 2, 2020, 5, 2, 200000]。""", 基于table和columns可能的cell values 是 = ['刘锝桦', 1992, 4, 2, 2020, 5, 2, 200000]。""",
"schema_links":"""["结算播放量", "发布时间", "歌手名", "刘锝桦", 1992, 4, 2, 2020, 5, 2, 200000]""", "schema_links":"""["结算播放量", "发布时间", "歌手名", "刘锝桦", 1992, 4, 2, 2020, 5, 2, 200000]""",
"sql":"""select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 1992 and MONTH(发布时间) >= 4 and DAY(发布时间) >= 2 and YEAR(发布时间) <= 2020 and MONTH(发布时间) <= 5 and DAY(发布时间) <= 2 and 歌手名 = '刘锝桦' and 结算播放量 > 200000 and 数据日期 = '2023-08-16'""" "sql":"""select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 1992 and MONTH(发布时间) >= 4 and DAY(发布时间) >= 2 and YEAR(发布时间) <= 2020 and MONTH(发布时间) <= 5 and DAY(发布时间) <= 2 and 歌手名 = '刘锝桦' and 结算播放量 > 200000 and 数据日期 = '2023-08-16'"""
},
{
"current_date":"2023-09-04",
"table_name":"内容库产品",
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question":"内容库近30天访问次数的平均数",
"prior_schema_links":"""[]""",
"analysis": """让我们一步一步地思考。在问题“内容库近30天访问次数的平均数“中我们被问
“访问次数的平均数”所以我们需要column=[访问次数]
”内容库近30天“所以我们需要column=[数据日期]
基于table和columns可能的cell values 是 = [30]。""",
"schema_links":"""["访问次数", "数据日期", 30]""",
"sql":"""select avg(访问次数) from 内容库产品 where datediff('day', 数据日期, '2023-09-04') <= 30 """
},
{
"current_date":"2023-09-04",
"table_name":"内容库产品",
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question":"内容库近半年哪个月的访问次数汇总最高",
"prior_schema_links":"""[]""",
"analysis": """让我们一步一步地思考。在问题“内容库近半年哪个月的访问次数汇总最高“中,我们被问:
“访问次数汇总最高”所以我们需要column=[访问次数]
”内容库近半年“所以我们需要column=[数据日期]
基于table和columns可能的cell values 是 = [0.5]。""",
"schema_links":"""["访问次数", "数据日期", 0.5]""",
"sql":"""select MONTH(数据日期), sum(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期) order by sum(访问次数) desc limit 1 """
},
{
"current_date":"2023-09-04",
"table_name":"内容库产品",
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question":"内容库近半年每个月的平均访问次数",
"prior_schema_links":"""[]""",
"analysis": """让我们一步一步地思考。在问题“内容库近半年每个月的平均访问次数“中,我们被问:
“每个月的平均访问次数”所以我们需要column=[访问次数]
”内容库近半年“所以我们需要column=[数据日期]
基于table和columns可能的cell values 是 = [0.5]。""",
"schema_links":"""["访问次数", "数据日期", 0.5]""",
"sql":"""select MONTH(数据日期), avg(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期) """
},
{
"current_date":"2023-09-10",
"table_name":"内容库产品",
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question":"内容库 按部门统计访问次数 top10 的部门",
"prior_schema_links":"""[]""",
"analysis": """让我们一步一步地思考。在问题“内容库 按部门统计访问次数 top10 的部门“中,我们被问:
“访问次数 top10 的部门”所以我们需要column=[访问次数]
”内容库 按部门统计“所以我们需要column=[部门]
基于table和columns可能的cell values 是 = [10]。""",
"schema_links":"""["访问次数", "部门", 10]""",
"sql":"""select 部门, sum(访问次数) from 内容库产品 group by 部门 order by sum(访问次数) desc limit 10 """
} }
] ]

View File

@@ -5,11 +5,13 @@ PROJECT_DIR_PATH = os.path.dirname(os.path.abspath(__file__))
MODEL_NAME = "gpt-3.5-turbo-16k" MODEL_NAME = "gpt-3.5-turbo-16k"
OPENAI_API_KEY = "YOUR_API_KEY" OPENAI_API_KEY = "YOUR_API_KEY"
TEMPERATURE = 0.0 TEMPERATURE = 0.0
CHROMA_DB_PERSIST_DIR = 'chm_db' CHROMA_DB_PERSIST_DIR = 'chm_db'
PRESET_QUERY_COLLECTION_NAME = "preset_query_collection" PRESET_QUERY_COLLECTION_NAME = "preset_query_collection"
TEXT2DSL_COLLECTION_NAME = "text2dsl_collection" TEXT2DSL_COLLECTION_NAME = "text2dsl_collection"
TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM = 15
CHROMA_DB_PERSIST_PATH = os.path.join(PROJECT_DIR_PATH, CHROMA_DB_PERSIST_DIR) CHROMA_DB_PERSIST_PATH = os.path.join(PROJECT_DIR_PATH, CHROMA_DB_PERSIST_DIR)

View File

@@ -1,6 +1,8 @@
# -*- coding:utf-8 -*- # -*- coding:utf-8 -*-
from typing import Any, List, Mapping, Optional, Union
import os import os
import sys import sys
import time
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.dirname(os.path.abspath(__file__)))
@@ -13,41 +15,64 @@ from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
import chromadb import chromadb
from chromadb.config import Settings from chromadb.config import Settings
from chromadb.api import Collection, Documents, Embeddings
from few_shot_example.sql_exampler import examplars as din_sql_examplars from few_shot_example.sql_exampler import examplars as sql_examplars
from util.text2vec import Text2VecEmbeddingFunction, hg_embedding from util.text2vec import Text2VecEmbeddingFunction, hg_embedding
from util.chromadb_instance import client as chromadb_client from util.chromadb_instance import client as chromadb_client, empty_chroma_collection_2
from run_config import TEXT2DSL_COLLECTION_NAME, TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
from run_config import TEXT2DSL_COLLECTION_NAME def reload_sql_example_collection(vectorstore:Chroma,
sql_examplars:List[Mapping[str, str]],
schema_linking_example_selector:SemanticSimilarityExampleSelector,
sql_example_selector:SemanticSimilarityExampleSelector,
example_nums:int
):
print("original sql_examples_collection size:", vectorstore._collection.count())
new_collection = empty_chroma_collection_2(collection=vectorstore._collection)
vectorstore._collection = new_collection
print("emptied sql_examples_collection size:", vectorstore._collection.count())
vectorstore = Chroma(collection_name=TEXT2DSL_COLLECTION_NAME, schema_linking_example_selector = SemanticSimilarityExampleSelector(vectorstore=sql_examples_vectorstore, k=example_nums,
embedding_function=hg_embedding,
client=chromadb_client)
example_nums = 15
schema_linking_example_selector = SemanticSimilarityExampleSelector(vectorstore=vectorstore, k=example_nums,
input_keys=["question"], input_keys=["question"],
example_keys=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links"]) example_keys=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links"])
sql_example_selector = SemanticSimilarityExampleSelector(vectorstore=vectorstore, k=example_nums, sql_example_selector = SemanticSimilarityExampleSelector(vectorstore=sql_examples_vectorstore, k=example_nums,
input_keys=["question"], input_keys=["question"],
example_keys=["question", "current_date", "table_name", "schema_links", "sql"]) example_keys=["question", "current_date", "table_name", "schema_links", "sql"])
if vectorstore._collection.count() > 0: for example in sql_examplars:
print("examples already in din_sql_vectorstore")
print("init din_sql_vectorstore size:", vectorstore._collection.count())
if vectorstore._collection.count() < len(din_sql_examplars):
print("din_sql_examplars size:", len(din_sql_examplars))
vectorstore._collection.delete()
print("empty din_sql_vectorstore")
for example in din_sql_examplars:
schema_linking_example_selector.add_example(example)
print("added din_sql_vectorstore size:", vectorstore._collection.count())
else:
for example in din_sql_examplars:
schema_linking_example_selector.add_example(example) schema_linking_example_selector.add_example(example)
print("added din_sql_vectorstore size:", vectorstore._collection.count()) print("reloaded sql_examples_collection size:", vectorstore._collection.count())
return vectorstore, schema_linking_example_selector, sql_example_selector
sql_examples_vectorstore = Chroma(collection_name=TEXT2DSL_COLLECTION_NAME,
embedding_function=hg_embedding,
client=chromadb_client)
example_nums = TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
schema_linking_example_selector = SemanticSimilarityExampleSelector(vectorstore=sql_examples_vectorstore, k=example_nums,
input_keys=["question"],
example_keys=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links"])
sql_example_selector = SemanticSimilarityExampleSelector(vectorstore=sql_examples_vectorstore, k=example_nums,
input_keys=["question"],
example_keys=["question", "current_date", "table_name", "schema_links", "sql"])
if sql_examples_vectorstore._collection.count() > 0:
print("examples already in sql_vectorstore")
print("init sql_vectorstore size:", sql_examples_vectorstore._collection.count())
if sql_examples_vectorstore._collection.count() < len(sql_examplars):
print("sql_examplars size:", len(sql_examplars))
sql_examples_vectorstore, schema_linking_example_selector, sql_example_selector = reload_sql_example_collection(sql_examples_vectorstore, sql_examplars, schema_linking_example_selector, sql_example_selector, example_nums)
print("added sql_vectorstore size:", sql_examples_vectorstore._collection.count())
else:
sql_examples_vectorstore, schema_linking_example_selector, sql_example_selector = reload_sql_example_collection(sql_examples_vectorstore, sql_examplars, schema_linking_example_selector, sql_example_selector, example_nums)
print("added sql_vectorstore size:", sql_examples_vectorstore._collection.count())

View File

@@ -0,0 +1,31 @@
# -*- coding:utf-8 -*-
from typing import Any, List, Mapping, Optional, Union
import os
import sys
import requests
import json
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from run_config import TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
from few_shot_example.sql_exampler import examplars as sql_examplars
def text2dsl_setting_update(llm_host:str, llm_port:str,
sql_examplars:List[Mapping[str, str]], example_nums:int):
url = f"http://{llm_host}:{llm_port}/query2sql_setting_update/"
payload = {"sqlExamplars":sql_examplars, "exampleNums":example_nums}
headers = {'content-type': 'application/json'}
response = requests.post(url, data=json.dumps(payload), headers=headers)
print(response.text)
if __name__ == "__main__":
arguments = sys.argv
llm_host = str(arguments[1])
llm_port = str(arguments[2])
text2dsl_setting_update(llm_host, llm_port,
sql_examplars, TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM)

View File

@@ -8,53 +8,75 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(os.path.dirname(os.path.abspath(__file__))) sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from sql.prompt_maker import schema_linking_exampler, sql_exampler from sql.prompt_maker import schema_linking_exampler, sql_exampler
from sql.constructor import schema_linking_example_selector, sql_example_selector from sql.constructor import schema_linking_example_selector, sql_example_selector,sql_examples_vectorstore, reload_sql_example_collection
from sql.output_parser import schema_link_parse from sql.output_parser import schema_link_parse
from util.llm_instance import llm from util.llm_instance import llm
def query2sql(query_text: str, class Text2DSLAgent(object):
def __init__(self):
self.schema_linking_exampler = schema_linking_exampler
self.sql_exampler = sql_exampler
self.sql_examples_vectorstore = sql_examples_vectorstore
self.schema_linking_example_selector = schema_linking_example_selector
self.sql_example_selector = sql_example_selector
self.schema_link_parse = schema_link_parse
self.llm = llm
def update_examples(self, sql_examplars, example_nums):
self.sql_examples_vectorstore, self.schema_linking_example_selector, self.sql_example_selector = reload_sql_example_collection(self.sql_examples_vectorstore,
sql_examplars,
self.schema_linking_example_selector,
self.sql_example_selector,
example_nums)
def query2sql(self, query_text: str,
schema : Union[dict, None] = None, schema : Union[dict, None] = None,
current_date: str = None, current_date: str = None,
linking: Union[List[Mapping[str, str]], None] = None linking: Union[List[Mapping[str, str]], None] = None
): ):
print("query_text: ", query_text)
print("schema: ", schema)
print("current_date: ", current_date)
print("prior_schema_links: ", linking)
if linking is not None: print("query_text: ", query_text)
prior_schema_links = {item['fieldValue']:item['fieldName'] for item in linking} print("schema: ", schema)
else: print("current_date: ", current_date)
prior_schema_links = {} print("prior_schema_links: ", linking)
model_name = schema['modelName'] if linking is not None:
fields_list = schema['fieldNameList'] prior_schema_links = {item['fieldValue']:item['fieldName'] for item in linking}
else:
prior_schema_links = {}
schema_linking_prompt = schema_linking_exampler(query_text, model_name, fields_list, prior_schema_links, schema_linking_example_selector) model_name = schema['modelName']
print("schema_linking_prompt->", schema_linking_prompt) fields_list = schema['fieldNameList']
schema_link_output = llm(schema_linking_prompt)
schema_link_str = schema_link_parse(schema_link_output)
sql_prompt = sql_exampler(query_text, model_name, schema_link_str, current_date, sql_example_selector)
print("sql_prompt->", sql_prompt)
sql_output = llm(sql_prompt)
resp = dict() schema_linking_prompt = self.schema_linking_exampler(query_text, model_name, fields_list, prior_schema_links, self.schema_linking_example_selector)
resp['query'] = query_text print("schema_linking_prompt->", schema_linking_prompt)
resp['model'] = model_name schema_link_output = self.llm(schema_linking_prompt)
resp['fields'] = fields_list schema_link_str = self.schema_link_parse(schema_link_output)
resp['priorSchemaLinking'] = linking
resp['dataDate'] = current_date sql_prompt = self.sql_exampler(query_text, model_name, schema_link_str, current_date, self.sql_example_selector)
print("sql_prompt->", sql_prompt)
sql_output = llm(sql_prompt)
resp['schemaLinkingOutput'] = schema_link_output resp = dict()
resp['schemaLinkStr'] = schema_link_str resp['query'] = query_text
resp['model'] = model_name
resp['sqlOutput'] = sql_output resp['fields'] = fields_list
resp['priorSchemaLinking'] = linking
resp['dataDate'] = current_date
print("resp: ", resp) resp['schemaLinkingOutput'] = schema_link_output
resp['schemaLinkStr'] = schema_link_str
resp['sqlOutput'] = sql_output
return resp print("resp: ", resp)
return resp
text2sql_agent = Text2DSLAgent()

View File

@@ -1,5 +1,8 @@
# -*- coding:utf-8 -*- # -*- coding:utf-8 -*-
from typing import Any, List, Mapping, Optional, Union
import chromadb import chromadb
from chromadb.api import Collection, Documents, Embeddings
from chromadb.config import Settings from chromadb.config import Settings
from run_config import CHROMA_DB_PERSIST_PATH from run_config import CHROMA_DB_PERSIST_PATH
@@ -7,4 +10,28 @@ from run_config import CHROMA_DB_PERSIST_PATH
client = chromadb.Client(Settings( client = chromadb.Client(Settings(
chroma_db_impl="duckdb+parquet", chroma_db_impl="duckdb+parquet",
persist_directory=CHROMA_DB_PERSIST_PATH # Optional, defaults to .chromadb/ in the current directory persist_directory=CHROMA_DB_PERSIST_PATH # Optional, defaults to .chromadb/ in the current directory
)) ))
def empty_chroma_collection_2(collection:Collection):
collection_name = collection.name
client = collection._client
metadata = collection.metadata
embedding_function = collection._embedding_function
client.delete_collection(collection_name)
new_collection = client.get_or_create_collection(name=collection_name,
metadata=metadata,
embedding_function=embedding_function)
size_of_new_collection = new_collection.count()
print(f'Collection {collection_name} emptied. Size of new collection: {size_of_new_collection}')
return new_collection
def empty_chroma_collection(collection:Collection):
collection.delete()

View File

@@ -4,4 +4,5 @@ fastapi==0.95.1
chromadb==0.3.21 chromadb==0.3.21
tiktoken==0.3.3 tiktoken==0.3.3
uvicorn[standard]==0.21.1 uvicorn[standard]==0.21.1
pandas==1.5.3

Binary file not shown.

After

Width:  |  Height:  |  Size: 123 KiB

View File

@@ -0,0 +1,26 @@
# LLM模型配置
### **简介**
语言模型的使用是超音数的重要一环。能显著增强对用户的问题的理解能力,是通过对话形式与用户交互的基石之一。在本项目中对语言模型能力的应用主要在 LLM 和 Embedding 两方面;默认使用的模型中LLM选用闭源模型 gpt-3.5-turbo-16kEmbedding模型选用开源模型 GanymedeNil/text2vec-large-chinese。用户可以根据自己实际需求进行配置更改。
### **配置方式**
<div align="left" >
<img src=../images/nlp_config.png width="70%"/>
<p>图1-1 LLM配置文件</p>
</div>
1. LLM模型相关的配置在 supersonic/chat/core/src/main/python/llm/run_config.py 进行配置。
2. LLM采用OpenAI的闭源模型 gpt-3.5-turbo-16k在使用时需要提供OpenAI的API-Key才能调用LLM模型通过 OPENAI_API_KEY 变量进行配置。
3. Embedding模型采用开源模型 GanymedeNil/text2vec-large-chinese通过 HF_TEXT2VEC_MODEL_NAME 变量进行位置为了使用方便采用托管在HuggingFace的源初次启动时自动下载模型文件。
### **FAQ**
1. 可以用开源的LLM模型替代OpenAI的GPT模型吗
- 暂时不能。我们测试过大部分主流的开源LLM在实际使用中在本项目需要LLM提供的逻辑推理和代码生成场景上开源模型还不能满足需求。
- 我们会持续跟进开源LLM的最新进展在有满足要求的开源LLM后在项目中集成私有化部署开源LLM的能力。
2. GPT4、GPT3.5、GPT3.5-16k 这几个模型用哪个比较好?
- GPT3.5、GPT3.5-16k 均能基本满足要求但会有输出结果不稳定的情况GPT3.5的token长度限制为4k在现有CoT策略下容易出现超过长度限制的情况。
- GPT4的输出更稳定但费用成本远超GPT3.5,可以根据实际使用场景进行选择。
3. Embedding模型用其他的可以吗
- 可以。可以以该项目[text2vec]([URL](https://github.com/shibing624/text2vec))的榜单作为参考然后在HuggingFace找到对应模型的model card修改HF_TEXT2VEC_MODEL_NAME变量的取值。

View File

@@ -0,0 +1,25 @@
# text2sql功能相关配置
### **简介**
text2sql的功能实现高度依赖对LLM的应用。通过LLM生成SQL的过程中利用小样本(few-shots-examples)通过思维链(chain-of-thoughts)的方式对LLM in-context-learning的能力进行引导对于生成较为稳定且符合下游语法解析规则的SQL非常重要。用户可以根据自身需要对样本池及样本的数量进行配置使其更加符合自身业务特点。
### **配置方式**
1. 样本池的配置。
- supersonic/chat/core/src/main/python/llm/few_shot_example/sql_exampler.py为样本池配置文件。用户可以以已有的样本作为参考配置更贴近自身业务需求的样本用于更好的引导LLM生成SQL。
2. 样本数量的配置。
- 在supersonic/chat/core/src/main/python/llm/run_config.py 中通过 TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM 变量进行配置。
- 默认值为15为项目在内部实践后较优的经验值。样本少太少对导致LLM在生成SQL的过程中缺少引导和示范生成的SQL会更不稳定样本太多会增加生成SQL需要的时间和LLM的token消耗或超过LLM的token上限
- <div align="left" >
<img src=../images/text2sql_config.png width="70%"/>
<p>图1-1 样本数量的配置文件</p>
</div>
3. 运行中更新配置的脚本。
- 如果在启动项目后用户需要对text2sql功能的相关配置进行调试可以在修改相关配置文件后通过脚本 supersonic/chat/core/src/main/python/bin/text2sql_resetting.sh 在项目运行中让配置生效。
### **FAQ**
1. 生成一个SQL需要消耗的的LLM token数量太多了按照openAI对token的收费标准生成一个SQL太贵了可以少用一些token吗
- 可以。 用户可以根据自身需求如配置方式1.中所示修改样本池中的样本选用一些更加简短的样本。如配置方式2.中所示,减少使用的样本数量。
- 需要注意样本和样本数量的选择对生成SQL的质量有很大的影响。过于激进的降低输入的token数量可能会降低生成SQL的质量。需要用户根据自身业务特点实测后进行平衡。