[feature][chat]Introduce LLM-based DataInterpreter. #1828

This commit is contained in:
jerryjzhang
2024-10-20 15:23:39 +08:00
parent f196561d55
commit 2b70140619
5 changed files with 74 additions and 5 deletions

View File

@@ -0,0 +1,64 @@
package com.tencent.supersonic.chat.server.processor.execute;
import com.tencent.supersonic.chat.api.pojo.response.QueryResult;
import com.tencent.supersonic.chat.server.agent.Agent;
import com.tencent.supersonic.chat.server.pojo.ExecuteContext;
import com.tencent.supersonic.common.pojo.ChatApp;
import com.tencent.supersonic.common.pojo.enums.AppModule;
import com.tencent.supersonic.common.util.ChatAppManager;
import dev.langchain4j.data.message.AiMessage;
import dev.langchain4j.model.chat.ChatLanguageModel;
import dev.langchain4j.model.input.Prompt;
import dev.langchain4j.model.input.PromptTemplate;
import dev.langchain4j.model.output.Response;
import dev.langchain4j.provider.ModelProvider;
import org.apache.commons.lang.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.HashMap;
import java.util.Map;
import java.util.Objects;
public class DataInterpretProcessor implements ExecuteResultProcessor {
private static final Logger keyPipelineLog = LoggerFactory.getLogger("keyPipeline");
public static final String APP_KEY = "DATA_INTERPRETER";
private static final String INSTRUCTION = ""
+ "#Role: You are a data expert who communicates with business users everyday."
+ "\n#Task: Your will be provided with a question asked by a user and the relevant "
+ "result data queried from the databases, please interpret the data and organize a brief answer."
+ "\n#Rules: " + "\n1.The `#Answer` must use the same language as the `#Question`."
+ "\n#Question:{{question}} #Data:{{data}} #Answer:";
public DataInterpretProcessor() {
ChatAppManager.register(APP_KEY, ChatApp.builder().prompt(INSTRUCTION).name("结果数据解读")
.appModule(AppModule.CHAT).description("通过大模型对结果数据做提炼总结").enable(false).build());
}
@Override
public void process(ExecuteContext executeContext, QueryResult queryResult) {
Agent agent = executeContext.getAgent();
ChatApp chatApp = agent.getChatAppConfig().get(APP_KEY);
if (Objects.isNull(chatApp) || !chatApp.isEnable()) {
return;
}
Map<String, Object> variable = new HashMap<>();
variable.put("question", executeContext.getQueryText());
variable.put("data", queryResult.getTextResult());
Prompt prompt = PromptTemplate.from(chatApp.getPrompt()).apply(variable);
ChatLanguageModel chatLanguageModel =
ModelProvider.getChatModel(chatApp.getChatModelConfig());
Response<AiMessage> response = chatLanguageModel.generate(prompt.toUserMessage());
String anwser = response.content().text();
keyPipelineLog.info("DataInterpretProcessor modelReq:\n{} \nmodelResp:\n{}", prompt.text(),
anwser);
if (StringUtils.isNotBlank(anwser)) {
queryResult.setTextResult(anwser);
}
}
}

View File

@@ -11,12 +11,13 @@ import com.tencent.supersonic.headless.api.pojo.SchemaElement;
import com.tencent.supersonic.headless.api.pojo.SchemaElementType;
import com.tencent.supersonic.headless.api.pojo.SemanticParseInfo;
import com.tencent.supersonic.headless.server.facade.service.SemanticLayerService;
import org.springframework.util.CollectionUtils;
import java.util.Comparator;
import java.util.List;
import java.util.Objects;
import java.util.Optional;
import java.util.stream.Collectors;
import org.springframework.util.CollectionUtils;
/**
* DimensionRecommendProcessor recommend some dimensions related to metrics based on configuration
@@ -37,7 +38,8 @@ public class DimensionRecommendProcessor implements ExecuteResultProcessor {
if (!firstMetric.isPresent()) {
return;
}
List<SchemaElement> dimensionRecommended = getDimensions(firstMetric.get().getId(), dataSetId);
List<SchemaElement> dimensionRecommended =
getDimensions(firstMetric.get().getId(), dataSetId);
queryResult.setRecommendedDimensions(dimensionRecommended);
}

View File

@@ -20,7 +20,8 @@ com.tencent.supersonic.chat.server.processor.parse.ParseResultProcessor=\
com.tencent.supersonic.chat.server.processor.execute.ExecuteResultProcessor=\
com.tencent.supersonic.chat.server.processor.execute.MetricRecommendProcessor,\
com.tencent.supersonic.chat.server.processor.execute.DimensionRecommendProcessor,\
com.tencent.supersonic.chat.server.processor.execute.MetricRatioProcessor
com.tencent.supersonic.chat.server.processor.execute.MetricRatioProcessor,\
com.tencent.supersonic.chat.server.processor.execute.DataInterpretProcessor
### auth-authentication SPIs

View File

@@ -72,7 +72,8 @@ com.tencent.supersonic.chat.server.processor.parse.ParseResultProcessor=\
com.tencent.supersonic.chat.server.processor.execute.ExecuteResultProcessor=\
com.tencent.supersonic.chat.server.processor.execute.MetricRecommendProcessor,\
com.tencent.supersonic.chat.server.processor.execute.DimensionRecommendProcessor,\
com.tencent.supersonic.chat.server.processor.execute.MetricRatioProcessor
com.tencent.supersonic.chat.server.processor.execute.MetricRatioProcessor,\
com.tencent.supersonic.chat.server.processor.execute.DataInterpretProcessor
### auth-authentication SPIs

View File

@@ -52,7 +52,8 @@ public class BaseTest extends BaseApplication {
SemanticParseInfo semanticParseInfo = parseResp.getSelectedParses().get(0);
ChatExecuteReq request = ChatExecuteReq.builder().queryText(parseResp.getQueryText())
.user(DataUtils.getUser()).parseId(semanticParseInfo.getId())
.queryId(parseResp.getQueryId()).chatId(chatId).saveAnswer(true).build();
.queryId(parseResp.getQueryId()).chatId(chatId).agentId(agentId).saveAnswer(true)
.build();
QueryResult queryResult = chatQueryService.execute(request);
queryResult.setChatContext(semanticParseInfo);
return queryResult;