# text2sql功能相关配置 ### **简介** text2sql的功能实现,高度依赖对LLM的应用。通过LLM生成SQL的过程中,利用小样本(few-shots-examples)通过思维链(chain-of-thoughts)的方式对LLM in-context-learning的能力进行引导,对于生成较为稳定且符合下游语法解析规则的SQL非常重要。用户可以根据自身需要,对样本池及样本的数量进行配置,使其更加符合自身业务特点。 ### **配置方式** 1. 样本池的配置。 - supersonic/chat/core/src/main/python/few_shot_example/sql_exampler.py 为样本池配置文件。用户可以以已有的样本作为参考,配置更贴近自身业务需求的样本,用于更好的引导LLM生成SQL。 2. 样本数量的配置。 - 在 supersonic/chat/core/src/main/python/run_config.py 中通过 TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM 变量进行配置。 - 默认值为15,为项目在内部实践后较优的经验值。样本少太少,对导致LLM在生成SQL的过程中缺少引导和示范,生成的SQL会更不稳定;样本太多,会增加生成SQL需要的时间和LLM的token消耗(或超过LLM的token上限)。 3. SQL生成方式的配置 - 在 supersonic/chat/core/src/main/python/run_config.py 中通过 TEXT2DSL_IS_SHORTCUT 变量进行配置。 - 默认值为False;当为False时,会调用2次LLM生成SQL;当为True时,会只调用1次LLM生成SQL。相较于2次LLM调用生成的SQL,耗时会减少30-40%,token的消耗量会减少30%左右,但生成的SQL正确率会有所下降。
图1-1 配置文件