Merge branch 'feature/showcase' into feature/lxw

# Conflicts:
#	chat/core/src/main/java/com/tencent/supersonic/chat/service/impl/QueryServiceImpl.java
#	chat/core/src/main/resources/mapper/ChatQueryDOMapper.xml
This commit is contained in:
jolunoluo
2023-09-25 16:59:31 +08:00
106 changed files with 2495 additions and 1162 deletions

1
.gitignore vendored
View File

@@ -17,3 +17,4 @@ assembly/runtime/*
**/.flattened-pom.xml
chm_db/
__pycache__/
/dict

View File

@@ -10,7 +10,7 @@ public interface AuthService {
List<AuthGroup> queryAuthGroups(String domainId, Integer groupId);
void updateAuthGroup(AuthGroup group);
void addOrUpdateAuthGroup(AuthGroup group);
void removeAuthGroup(AuthGroup group);

View File

@@ -53,7 +53,7 @@ public class AuthServiceImpl implements AuthService {
}
@Override
public void updateAuthGroup(AuthGroup group) {
public void addOrUpdateAuthGroup(AuthGroup group) {
Gson g = new Gson();
if (group.getGroupId() == null) {
int nextGroupId = 1;

View File

@@ -40,7 +40,7 @@ public class AuthController {
@PostMapping("/createGroup")
public void newAuthGroup(@RequestBody AuthGroup group) {
group.setGroupId(null);
authService.updateAuthGroup(group);
authService.addOrUpdateAuthGroup(group);
}
@PostMapping("/removeGroup")
@@ -58,7 +58,7 @@ public class AuthController {
if (group.getGroupId() == null || group.getGroupId() == 0) {
throw new RuntimeException("groupId is empty");
}
authService.updateAuthGroup(group);
authService.addOrUpdateAuthGroup(group);
}
/**

View File

@@ -7,6 +7,7 @@ import java.util.Map;
import java.util.stream.Collectors;
public class SemanticSchema implements Serializable {
private List<ModelSchema> modelSchemaList;
public SemanticSchema(List<ModelSchema> modelSchemaList) {
@@ -34,12 +35,28 @@ public class SemanticSchema implements Serializable {
return dimensions;
}
public List<SchemaElement> getDimensions(Long modelId) {
List<SchemaElement> dimensions = getDimensions();
return getElementsByModelId(modelId, dimensions);
}
public List<SchemaElement> getMetrics() {
List<SchemaElement> metrics = new ArrayList<>();
modelSchemaList.stream().forEach(d -> metrics.addAll(d.getMetrics()));
return metrics;
}
public List<SchemaElement> getMetrics(Long modelId) {
List<SchemaElement> metrics = getMetrics();
return getElementsByModelId(modelId, metrics);
}
private List<SchemaElement> getElementsByModelId(Long modelId, List<SchemaElement> elements) {
return elements.stream()
.filter(schemaElement -> modelId.equals(schemaElement.getModel()))
.collect(Collectors.toList());
}
public List<SchemaElement> getModels() {
List<SchemaElement> models = new ArrayList<>();
modelSchemaList.stream().forEach(d -> models.add(d.getModel()));

View File

@@ -1,25 +1,20 @@
package com.tencent.supersonic.chat.api.pojo.request;
import com.tencent.supersonic.auth.api.authentication.pojo.User;
import com.tencent.supersonic.chat.api.pojo.SchemaElement;
import com.tencent.supersonic.common.pojo.DateConf;
import com.tencent.supersonic.common.pojo.Order;
import com.tencent.supersonic.common.pojo.enums.AggregateTypeEnum;
import java.util.HashSet;
import java.util.Set;
import lombok.Data;
@Data
public class QueryDataReq {
String queryMode;
SchemaElement model;
Set<SchemaElement> metrics = new HashSet<>();
Set<SchemaElement> dimensions = new HashSet<>();
Set<QueryFilter> dimensionFilters = new HashSet<>();
Set<QueryFilter> metricFilters = new HashSet<>();
private AggregateTypeEnum aggType = AggregateTypeEnum.NONE;
private Set<Order> orders = new HashSet<>();
private User user;
private Set<SchemaElement> metrics = new HashSet<>();
private Set<SchemaElement> dimensions = new HashSet<>();
private Set<QueryFilter> dimensionFilters = new HashSet<>();
private DateConf dateInfo;
private Long limit;
private Boolean nativeQuery = false;
private Long queryId = 7L;
private Integer parseId = 2;
}

View File

@@ -1,27 +0,0 @@
package com.tencent.supersonic.chat.corrector;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import com.tencent.supersonic.chat.parser.llm.dsl.DSLDateHelper;
import com.tencent.supersonic.common.util.jsqlparser.SqlParserSelectHelper;
import com.tencent.supersonic.common.util.jsqlparser.SqlParserUpdateHelper;
import java.util.List;
import lombok.extern.slf4j.Slf4j;
import org.springframework.util.CollectionUtils;
@Slf4j
public class DateFieldCorrector extends BaseSemanticCorrector {
@Override
public void correct(SemanticCorrectInfo semanticCorrectInfo) {
String sql = semanticCorrectInfo.getSql();
List<String> whereFields = SqlParserSelectHelper.getWhereFields(sql);
if (CollectionUtils.isEmpty(whereFields) || !whereFields.contains(DATE_FIELD)) {
String currentDate = DSLDateHelper.getReferenceDate(semanticCorrectInfo.getParseInfo().getModelId());
sql = SqlParserUpdateHelper.addWhere(sql, DATE_FIELD, currentDate);
}
semanticCorrectInfo.setPreSql(semanticCorrectInfo.getSql());
semanticCorrectInfo.setSql(sql);
}
}

View File

@@ -1,18 +0,0 @@
package com.tencent.supersonic.chat.corrector;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import com.tencent.supersonic.common.util.jsqlparser.SqlParserUpdateHelper;
import lombok.extern.slf4j.Slf4j;
@Slf4j
public class FieldCorrector extends BaseSemanticCorrector {
@Override
public void correct(SemanticCorrectInfo semanticCorrectInfo) {
String preSql = semanticCorrectInfo.getSql();
semanticCorrectInfo.setPreSql(preSql);
String sql = SqlParserUpdateHelper.replaceFields(preSql,
getFieldToBizName(semanticCorrectInfo.getParseInfo().getModelId()));
semanticCorrectInfo.setSql(sql);
}
}

View File

@@ -1,16 +0,0 @@
package com.tencent.supersonic.chat.corrector;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import com.tencent.supersonic.common.util.jsqlparser.SqlParserUpdateHelper;
import lombok.extern.slf4j.Slf4j;
@Slf4j
public class FunctionAliasCorrector extends BaseSemanticCorrector {
@Override
public void correct(SemanticCorrectInfo semanticCorrectInfo) {
String replaceAlias = SqlParserUpdateHelper.replaceAlias(semanticCorrectInfo.getSql());
semanticCorrectInfo.setSql(replaceAlias);
}
}

View File

@@ -1,17 +0,0 @@
package com.tencent.supersonic.chat.corrector;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import com.tencent.supersonic.common.util.jsqlparser.SqlParserUpdateHelper;
import lombok.extern.slf4j.Slf4j;
@Slf4j
public class FunctionCorrector extends BaseSemanticCorrector {
@Override
public void correct(SemanticCorrectInfo semanticCorrectInfo) {
String preSql = semanticCorrectInfo.getSql();
semanticCorrectInfo.setPreSql(preSql);
String sql = SqlParserUpdateHelper.replaceFunction(preSql);
semanticCorrectInfo.setSql(sql);
}
}

View File

@@ -16,11 +16,39 @@ import lombok.extern.slf4j.Slf4j;
import org.springframework.util.CollectionUtils;
@Slf4j
public class FieldNameCorrector extends BaseSemanticCorrector {
public class GlobalCorrector extends BaseSemanticCorrector {
@Override
public void correct(SemanticCorrectInfo semanticCorrectInfo) {
replaceAlias(semanticCorrectInfo);
updateFieldNameByLinkingValue(semanticCorrectInfo);
updateFieldNameByBizName(semanticCorrectInfo);
addAggregateToMetric(semanticCorrectInfo);
}
private void addAggregateToMetric(SemanticCorrectInfo semanticCorrectInfo) {
}
private void replaceAlias(SemanticCorrectInfo semanticCorrectInfo) {
String replaceAlias = SqlParserUpdateHelper.replaceAlias(semanticCorrectInfo.getSql());
semanticCorrectInfo.setSql(replaceAlias);
}
private void updateFieldNameByBizName(SemanticCorrectInfo semanticCorrectInfo) {
Map<String, String> fieldToBizName = getFieldToBizName(semanticCorrectInfo.getParseInfo().getModelId());
String sql = SqlParserUpdateHelper.replaceFields(semanticCorrectInfo.getSql(), fieldToBizName);
semanticCorrectInfo.setSql(sql);
}
private void updateFieldNameByLinkingValue(SemanticCorrectInfo semanticCorrectInfo) {
Object context = semanticCorrectInfo.getParseInfo().getProperties().get(Constants.CONTEXT);
if (Objects.isNull(context)) {
return;
@@ -45,5 +73,4 @@ public class FieldNameCorrector extends BaseSemanticCorrector {
String sql = SqlParserUpdateHelper.replaceFieldNameByValue(preSql, fieldValueToFieldNames);
semanticCorrectInfo.setSql(sql);
}
}

View File

@@ -0,0 +1,15 @@
package com.tencent.supersonic.chat.corrector;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import lombok.extern.slf4j.Slf4j;
@Slf4j
public class GroupByCorrector extends BaseSemanticCorrector {
@Override
public void correct(SemanticCorrectInfo semanticCorrectInfo) {
}
}

View File

@@ -0,0 +1,14 @@
package com.tencent.supersonic.chat.corrector;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import lombok.extern.slf4j.Slf4j;
@Slf4j
public class HavingCorrector extends BaseSemanticCorrector {
@Override
public void correct(SemanticCorrectInfo semanticCorrectInfo) {
}
}

View File

@@ -1,48 +0,0 @@
package com.tencent.supersonic.chat.corrector;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import com.tencent.supersonic.chat.api.pojo.request.QueryFilters;
import com.tencent.supersonic.common.pojo.Constants;
import com.tencent.supersonic.common.util.StringUtil;
import com.tencent.supersonic.common.util.jsqlparser.SqlParserUpdateHelper;
import java.util.Objects;
import java.util.stream.Collectors;
import lombok.extern.slf4j.Slf4j;
import net.sf.jsqlparser.JSQLParserException;
import net.sf.jsqlparser.expression.Expression;
import net.sf.jsqlparser.parser.CCJSqlParserUtil;
import org.apache.commons.collections.CollectionUtils;
import org.apache.commons.lang3.StringUtils;
@Slf4j
public class QueryFilterAppend extends BaseSemanticCorrector {
@Override
public void correct(SemanticCorrectInfo semanticCorrectInfo) throws JSQLParserException {
String queryFilter = getQueryFilter(semanticCorrectInfo.getQueryFilters());
String preSql = semanticCorrectInfo.getSql();
if (StringUtils.isNotEmpty(queryFilter)) {
log.info("add queryFilter to preSql :{}", queryFilter);
Expression expression = CCJSqlParserUtil.parseCondExpression(queryFilter);
String sql = SqlParserUpdateHelper.addWhere(preSql, expression);
semanticCorrectInfo.setPreSql(preSql);
semanticCorrectInfo.setSql(sql);
}
}
private String getQueryFilter(QueryFilters queryFilters) {
if (Objects.isNull(queryFilters) || CollectionUtils.isEmpty(queryFilters.getFilters())) {
return null;
}
return queryFilters.getFilters().stream()
.map(filter -> {
String bizNameWrap = StringUtil.getSpaceWrap(filter.getBizName());
String operatorWrap = StringUtil.getSpaceWrap(filter.getOperator().getValue());
String valueWrap = StringUtil.getCommaWrap(filter.getValue().toString());
return bizNameWrap + operatorWrap + valueWrap;
})
.collect(Collectors.joining(Constants.AND_UPPER));
}
}

View File

@@ -13,11 +13,12 @@ import net.sf.jsqlparser.expression.Expression;
import org.springframework.util.CollectionUtils;
@Slf4j
public class SelectFieldAppendCorrector extends BaseSemanticCorrector {
public class SelectCorrector extends BaseSemanticCorrector {
@Override
public void correct(SemanticCorrectInfo semanticCorrectInfo) {
String preSql = semanticCorrectInfo.getSql();
if (SqlParserSelectHelper.hasAggregateFunction(preSql)) {
Expression havingExpression = SqlParserSelectHelper.getHavingExpression(preSql);
if (Objects.nonNull(havingExpression)) {

View File

@@ -5,7 +5,7 @@ import com.tencent.supersonic.common.util.jsqlparser.SqlParserUpdateHelper;
import lombok.extern.slf4j.Slf4j;
@Slf4j
public class TableNameCorrector extends BaseSemanticCorrector {
public class TableCorrector extends BaseSemanticCorrector {
public static final String TABLE_PREFIX = "t_";

View File

@@ -1,26 +1,92 @@
package com.tencent.supersonic.chat.corrector;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import com.tencent.supersonic.chat.api.pojo.SchemaElement;
import com.tencent.supersonic.chat.api.pojo.SchemaValueMap;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import com.tencent.supersonic.chat.api.pojo.SemanticSchema;
import com.tencent.supersonic.chat.api.pojo.request.QueryFilters;
import com.tencent.supersonic.chat.parser.llm.dsl.DSLDateHelper;
import com.tencent.supersonic.common.pojo.Constants;
import com.tencent.supersonic.common.util.ContextUtils;
import com.tencent.supersonic.common.util.StringUtil;
import com.tencent.supersonic.common.util.jsqlparser.SqlParserSelectHelper;
import com.tencent.supersonic.common.util.jsqlparser.SqlParserUpdateHelper;
import com.tencent.supersonic.knowledge.service.SchemaService;
import com.tencent.supersonic.semantic.api.model.enums.TimeDimensionEnum;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.stream.Collectors;
import lombok.extern.slf4j.Slf4j;
import net.sf.jsqlparser.JSQLParserException;
import net.sf.jsqlparser.expression.Expression;
import net.sf.jsqlparser.parser.CCJSqlParserUtil;
import org.apache.commons.lang3.StringUtils;
import org.apache.logging.log4j.util.Strings;
import org.springframework.util.CollectionUtils;
@Slf4j
public class FieldValueCorrector extends BaseSemanticCorrector {
public class WhereCorrector extends BaseSemanticCorrector {
@Override
public void correct(SemanticCorrectInfo semanticCorrectInfo) {
public void correct(SemanticCorrectInfo semanticCorrectInfo) throws JSQLParserException {
addDateIfNotExist(semanticCorrectInfo);
parserDateDiffFunction(semanticCorrectInfo);
addQueryFilter(semanticCorrectInfo);
updateFieldValueByTechName(semanticCorrectInfo);
}
private void addQueryFilter(SemanticCorrectInfo semanticCorrectInfo) throws JSQLParserException {
String queryFilter = getQueryFilter(semanticCorrectInfo.getQueryFilters());
String preSql = semanticCorrectInfo.getSql();
if (StringUtils.isNotEmpty(queryFilter)) {
log.info("add queryFilter to preSql :{}", queryFilter);
Expression expression = CCJSqlParserUtil.parseCondExpression(queryFilter);
String sql = SqlParserUpdateHelper.addWhere(preSql, expression);
semanticCorrectInfo.setPreSql(preSql);
semanticCorrectInfo.setSql(sql);
}
}
private void parserDateDiffFunction(SemanticCorrectInfo semanticCorrectInfo) {
String preSql = semanticCorrectInfo.getSql();
semanticCorrectInfo.setPreSql(preSql);
String sql = SqlParserUpdateHelper.replaceFunction(preSql);
semanticCorrectInfo.setSql(sql);
}
private void addDateIfNotExist(SemanticCorrectInfo semanticCorrectInfo) {
String sql = semanticCorrectInfo.getSql();
List<String> whereFields = SqlParserSelectHelper.getWhereFields(sql);
if (CollectionUtils.isEmpty(whereFields) || !whereFields.contains(TimeDimensionEnum.DAY.getName())) {
String currentDate = DSLDateHelper.getReferenceDate(semanticCorrectInfo.getParseInfo().getModelId());
sql = SqlParserUpdateHelper.addWhere(sql, TimeDimensionEnum.DAY.getName(), currentDate);
}
semanticCorrectInfo.setSql(sql);
}
private String getQueryFilter(QueryFilters queryFilters) {
if (Objects.isNull(queryFilters) || CollectionUtils.isEmpty(queryFilters.getFilters())) {
return null;
}
return queryFilters.getFilters().stream()
.map(filter -> {
String bizNameWrap = StringUtil.getSpaceWrap(filter.getBizName());
String operatorWrap = StringUtil.getSpaceWrap(filter.getOperator().getValue());
String valueWrap = StringUtil.getCommaWrap(filter.getValue().toString());
return bizNameWrap + operatorWrap + valueWrap;
})
.collect(Collectors.joining(Constants.AND_UPPER));
}
private void updateFieldValueByTechName(SemanticCorrectInfo semanticCorrectInfo) {
SemanticSchema semanticSchema = ContextUtils.getBean(SchemaService.class).getSemanticSchema();
Long modelId = semanticCorrectInfo.getParseInfo().getModel().getId();
List<SchemaElement> dimensions = semanticSchema.getDimensions().stream()
@@ -39,7 +105,6 @@ public class FieldValueCorrector extends BaseSemanticCorrector {
return;
}
private Map<String, Map<String, String>> getAliasAndBizNameToTechName(List<SchemaElement> dimensions) {
if (CollectionUtils.isEmpty(dimensions)) {
return new HashMap<>();

View File

@@ -408,27 +408,20 @@ public class LLMDslParser implements SemanticParser {
protected List<String> getFieldNameList(QueryContext queryCtx, Long modelId, SemanticSchema semanticSchema,
LLMParserConfig llmParserConfig) {
Set<String> results = getTopNFieldNames(modelId, semanticSchema, llmParserConfig);
Set<String> fieldNameList = getMatchedFieldNames(queryCtx, modelId, semanticSchema);
results.addAll(fieldNameList);
return new ArrayList<>(results);
}
protected Set<String> getMatchedFieldNames(QueryContext queryCtx, Long modelId, SemanticSchema semanticSchema) {
Map<Long, String> itemIdToName = getItemIdToName(modelId, semanticSchema);
Set<String> results = semanticSchema.getDimensions().stream()
.filter(schemaElement -> modelId.equals(schemaElement.getModel()))
.sorted(Comparator.comparing(SchemaElement::getUseCnt).reversed())
.limit(llmParserConfig.getDimensionTopN())
.map(entry -> entry.getName())
.collect(Collectors.toSet());
Set<String> metrics = semanticSchema.getMetrics().stream()
.filter(schemaElement -> modelId.equals(schemaElement.getModel()))
.sorted(Comparator.comparing(SchemaElement::getUseCnt).reversed())
.limit(llmParserConfig.getMetricTopN())
.map(entry -> entry.getName())
.collect(Collectors.toSet());
results.addAll(metrics);
List<SchemaElementMatch> matchedElements = queryCtx.getMapInfo().getMatchedElements(modelId);
if (CollectionUtils.isEmpty(matchedElements)) {
return new ArrayList<>(results);
return new HashSet<>();
}
Set<String> fieldNameList = matchedElements.stream()
.filter(schemaElementMatch -> {
@@ -447,13 +440,29 @@ public class LLMDslParser implements SemanticParser {
})
.filter(name -> StringUtils.isNotEmpty(name) && !name.contains("%"))
.collect(Collectors.toSet());
results.addAll(fieldNameList);
return new ArrayList<>(results);
return fieldNameList;
}
private Set<String> getTopNFieldNames(Long modelId, SemanticSchema semanticSchema,
LLMParserConfig llmParserConfig) {
Set<String> results = semanticSchema.getDimensions(modelId).stream()
.sorted(Comparator.comparing(SchemaElement::getUseCnt).reversed())
.limit(llmParserConfig.getDimensionTopN())
.map(entry -> entry.getName())
.collect(Collectors.toSet());
Set<String> metrics = semanticSchema.getMetrics(modelId).stream()
.sorted(Comparator.comparing(SchemaElement::getUseCnt).reversed())
.limit(llmParserConfig.getMetricTopN())
.map(entry -> entry.getName())
.collect(Collectors.toSet());
results.addAll(metrics);
return results;
}
protected Map<Long, String> getItemIdToName(Long modelId, SemanticSchema semanticSchema) {
return semanticSchema.getDimensions().stream()
.filter(entry -> modelId.equals(entry.getModel()))
return semanticSchema.getDimensions(modelId).stream()
.collect(Collectors.toMap(SchemaElement::getId, SchemaElement::getName, (value1, value2) -> value2));
}

View File

@@ -72,6 +72,7 @@ public class ChatQueryController {
public Object queryData(@RequestBody QueryDataReq queryData,
HttpServletRequest request, HttpServletResponse response)
throws Exception {
queryData.setUser(UserHolder.findUser(request, response));
return queryService.executeDirectQuery(queryData, UserHolder.findUser(request, response));
}

View File

@@ -3,11 +3,14 @@ package com.tencent.supersonic.chat.service.impl;
import com.tencent.supersonic.auth.api.authentication.pojo.User;
import com.tencent.supersonic.chat.api.component.SchemaMapper;
import com.tencent.supersonic.chat.api.component.SemanticLayer;
import com.tencent.supersonic.chat.api.component.SemanticQuery;
import com.tencent.supersonic.chat.api.component.SemanticParser;
import com.tencent.supersonic.chat.api.pojo.ChatContext;
import com.tencent.supersonic.chat.api.pojo.QueryContext;
import com.tencent.supersonic.chat.api.pojo.SemanticParseInfo;
import com.tencent.supersonic.chat.api.pojo.request.QueryDataReq;
import com.tencent.supersonic.chat.api.pojo.request.QueryFilter;
import com.tencent.supersonic.chat.api.pojo.request.DimensionValueReq;
import com.tencent.supersonic.chat.api.pojo.request.ExecuteQueryReq;
import com.tencent.supersonic.chat.api.pojo.request.QueryReq;
@@ -15,13 +18,15 @@ import com.tencent.supersonic.chat.api.pojo.response.EntityInfo;
import com.tencent.supersonic.chat.api.pojo.response.ParseResp;
import com.tencent.supersonic.chat.api.pojo.response.QueryResult;
import com.tencent.supersonic.chat.api.pojo.response.QueryState;
import com.tencent.supersonic.chat.parser.llm.dsl.DSLParseResult;
import com.tencent.supersonic.chat.api.pojo.response.SolvedQueryRecallResp;
import com.tencent.supersonic.chat.persistence.dataobject.ChatParseDO;
import com.tencent.supersonic.chat.persistence.dataobject.CostType;
import com.tencent.supersonic.chat.persistence.dataobject.StatisticsDO;
import com.tencent.supersonic.chat.query.QuerySelector;
import com.tencent.supersonic.chat.api.pojo.request.QueryDataReq;
import com.tencent.supersonic.chat.query.QueryManager;
import com.tencent.supersonic.chat.query.llm.dsl.DslQuery;
import com.tencent.supersonic.chat.query.llm.dsl.LLMResp;
import com.tencent.supersonic.chat.queryresponder.QueryResponder;
import com.tencent.supersonic.chat.service.ChatService;
import com.tencent.supersonic.chat.service.QueryService;
@@ -29,25 +34,29 @@ import com.tencent.supersonic.chat.service.SemanticService;
import com.tencent.supersonic.chat.service.StatisticsService;
import com.tencent.supersonic.chat.utils.ComponentFactory;
import java.util.Map;
import com.tencent.supersonic.semantic.api.model.response.ExplainResp;
import java.util.List;
import java.util.ArrayList;
import java.util.Set;
import java.util.HashSet;
import java.util.HashMap;
import java.util.Comparator;
import java.util.Objects;
import java.util.stream.Collectors;
import com.tencent.supersonic.common.pojo.Constants;
import com.tencent.supersonic.common.pojo.DateConf;
import com.tencent.supersonic.common.util.ContextUtils;
import com.tencent.supersonic.common.util.JsonUtil;
import com.tencent.supersonic.common.util.jsqlparser.SqlParserUpdateHelper;
import com.tencent.supersonic.semantic.api.model.response.QueryResultWithSchemaResp;
import com.tencent.supersonic.semantic.api.query.enums.FilterOperatorEnum;
import com.tencent.supersonic.semantic.api.query.pojo.Filter;
import com.tencent.supersonic.semantic.api.query.request.QueryStructReq;
import lombok.extern.slf4j.Slf4j;
import org.apache.calcite.sql.parser.SqlParseException;
import org.springframework.beans.BeanUtils;
import org.apache.commons.collections.CollectionUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Primary;
@@ -175,34 +184,26 @@ public class QueryServiceImpl implements QueryService {
ChatContext chatCtx = chatService.getOrCreateContext(queryReq.getChatId());
chatCtx.setAgentId(queryReq.getAgentId());
Long startTime = System.currentTimeMillis();
QueryResult queryResult = null;
try {
queryResult = semanticQuery.execute(queryReq.getUser());
} catch (Exception e) {
log.error("query execute failed, queryText:{}", queryReq.getQueryText(), e);
queryResult = new QueryResult();
queryResult.setQueryState(QueryState.INVALID);
QueryResult queryResult = semanticQuery.execute(queryReq.getUser());
if (queryResult != null) {
timeCostDOList.add(StatisticsDO.builder().cost((int) (System.currentTimeMillis() - startTime))
.interfaceName(semanticQuery.getClass().getSimpleName()).type(CostType.QUERY.getType()).build());
saveInfo(timeCostDOList, queryReq.getQueryText(), queryReq.getQueryId(),
queryReq.getUser().getName(), queryReq.getChatId().longValue());
queryResult.setChatContext(parseInfo);
// update chat context after a successful semantic query
if (queryReq.isSaveAnswer() && QueryState.SUCCESS.equals(queryResult.getQueryState())) {
chatCtx.setParseInfo(parseInfo);
chatService.updateContext(chatCtx);
}
chatCtx.setQueryText(queryReq.getQueryText());
chatCtx.setUser(queryReq.getUser().getName());
chatService.updateQuery(queryReq.getQueryId(), queryResult, chatCtx);
} else {
chatService.deleteChatQuery(queryReq.getQueryId());
}
timeCostDOList.add(StatisticsDO.builder().cost((int) (System.currentTimeMillis() - startTime))
.interfaceName(semanticQuery.getClass().getSimpleName()).type(CostType.QUERY.getType()).build());
saveInfo(timeCostDOList, queryReq.getQueryText(), queryReq.getQueryId(),
queryReq.getUser().getName(), queryReq.getChatId().longValue());
queryResult.setChatContext(parseInfo);
// update chat context after a successful semantic query
if (queryReq.isSaveAnswer() && QueryState.SUCCESS.equals(queryResult.getQueryState())) {
chatCtx.setParseInfo(parseInfo);
chatService.updateContext(chatCtx);
queryResponder.saveSolvedQuery(queryReq.getQueryText(), queryReq.getQueryId(), queryReq.getParseId());
}
chatCtx.setQueryText(queryReq.getQueryText());
chatCtx.setUser(queryReq.getUser().getName());
chatService.updateQuery(queryReq.getQueryId(), queryResult, chatCtx);
if (!QueryState.SUCCESS.equals(queryResult.getQueryState())) {
List<SolvedQueryRecallResp> solvedQueryRecallResps =
queryResponder.recallSolvedQuery(queryReq.getQueryText());
queryResult.setSimilarSolvedQuery(solvedQueryRecallResps);
}
return queryResult;
}
@@ -273,8 +274,52 @@ public class QueryServiceImpl implements QueryService {
@Override
public QueryResult executeDirectQuery(QueryDataReq queryData, User user) throws SqlParseException {
SemanticQuery semanticQuery = QueryManager.createRuleQuery(queryData.getQueryMode());
BeanUtils.copyProperties(queryData, semanticQuery.getParseInfo());
ChatParseDO chatParseDO = chatService.getParseInfo(queryData.getQueryId(),
queryData.getUser().getName(), queryData.getParseId());
SemanticParseInfo parseInfo = JsonUtil.toObject(chatParseDO.getParseInfo(), SemanticParseInfo.class);
if (!parseInfo.getQueryMode().equals(DslQuery.QUERY_MODE)) {
if (CollectionUtils.isNotEmpty(queryData.getDimensions())) {
parseInfo.setDimensions(queryData.getDimensions());
}
if (CollectionUtils.isNotEmpty(queryData.getMetrics())) {
parseInfo.setMetrics(queryData.getMetrics());
}
if (CollectionUtils.isNotEmpty(queryData.getDimensionFilters())) {
parseInfo.setDimensionFilters(queryData.getDimensionFilters());
}
}
if (Objects.nonNull(queryData.getDateInfo())) {
parseInfo.setDateInfo(queryData.getDateInfo());
}
if (parseInfo.getQueryMode().equals(DslQuery.QUERY_MODE)
&& CollectionUtils.isNotEmpty(queryData.getDimensionFilters())) {
Map<String, Map<String, String>> filedNameToValueMap = new HashMap<>();
String json = JsonUtil.toString(parseInfo.getProperties().get(Constants.CONTEXT));
DSLParseResult dslParseResult = JsonUtil.toObject(json, DSLParseResult.class);
LLMResp llmResp = dslParseResult.getLlmResp();
String correctorSql = llmResp.getCorrectorSql();
log.info("correctorSql before replacing:{}", correctorSql);
for (QueryFilter dslQueryFilter : queryData.getDimensionFilters()) {
for (QueryFilter queryFilter : parseInfo.getDimensionFilters()) {
if (dslQueryFilter.getBizName().equals(queryFilter.getBizName())) {
Map<String, String> map = new HashMap<>();
map.put(queryFilter.getValue().toString(), dslQueryFilter.getValue().toString());
filedNameToValueMap.put(dslQueryFilter.getBizName(), map);
break;
}
}
}
log.info("filedNameToValueMap:{}", filedNameToValueMap);
correctorSql = SqlParserUpdateHelper.replaceValue(correctorSql, filedNameToValueMap);
log.info("correctorSql after replacing:{}", correctorSql);
llmResp.setCorrectorSql(correctorSql);
dslParseResult.setLlmResp(llmResp);
Map<String, Object> properties = new HashMap<>();
properties.put(Constants.CONTEXT, dslParseResult);
parseInfo.setProperties(properties);
}
SemanticQuery semanticQuery = QueryManager.createQuery(parseInfo.getQueryMode());
semanticQuery.setParseInfo(parseInfo);
QueryResult queryResult = semanticQuery.execute(user);
queryResult.setChatContext(semanticQuery.getParseInfo());
return queryResult;
@@ -282,8 +327,6 @@ public class QueryServiceImpl implements QueryService {
@Override
public Object queryDimensionValue(DimensionValueReq dimensionValueReq, User user) throws Exception {
com.tencent.supersonic.semantic.query.service.QueryService queryService =
ContextUtils.getBean(com.tencent.supersonic.semantic.query.service.QueryService.class);
QueryStructReq queryStructReq = new QueryStructReq();
DateConf dateConf = new DateConf();
@@ -307,7 +350,8 @@ public class QueryServiceImpl implements QueryService {
dimensionFilters.add(dimensionFilter);
queryStructReq.setDimensionFilters(dimensionFilters);
}
QueryResultWithSchemaResp queryResultWithSchemaResp = queryService.queryByStructWithAuth(queryStructReq, user);
SemanticLayer semanticLayer = ComponentFactory.getSemanticLayer();
QueryResultWithSchemaResp queryResultWithSchemaResp = semanticLayer.queryByStruct(queryStructReq, user);
Set<String> dimensionValues = new HashSet<>();
queryResultWithSchemaResp.getResultList().removeIf(o -> {
if (dimensionValues.contains(o.get(dimensionValueReq.getBizName()))) {

View File

@@ -1,348 +1,371 @@
examplars= [
{ "current_date":"2020-12-01",
"table_name":"内容库产品",
"fields_list":"""["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
"question":"比较jackjchen和robinlee在内容库的访问次数",
"prior_schema_links":"""['jackjchen'->用户名, 'robinlee'->用户名]""",
examplars = [
{
"current_date": "2020-12-01",
"table_name": "内容库产品",
"fields_list": """["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
"question": "比较jackjchen和robinlee在内容库的访问次数",
"prior_schema_links": """['jackjchen'->用户名, 'robinlee'->用户名]""",
"analysis": """让我们一步一步地思考。在问题“比较jackjchen和robinlee在内容库的访问次数“中我们被问
“比较jackjchen和robinlee”所以我们需要column=[用户名]
”内容库的访问次数“所以我们需要column=[访问次数]
基于table和columns可能的cell values 是 = ['jackjchen', 'robinlee']。""",
"schema_links":"""["用户名", "访问次数", "'jackjchen'", "'robinlee'"]""",
"sql":"""select 用户名, 访问次数 from 内容库产品 where 用户名 in ('jackjchen', 'robinlee') and 数据日期 = '2020-12-01' """
},
{ "current_date":"2022-11-06",
"table_name":"内容库产品",
"fields_list":"""["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
"question":"内容库近12个月访问人数 按部门",
"prior_schema_links":"""[]""",
"schema_links": """["用户名", "访问次数", "'jackjchen'", "'robinlee'"]""",
"sql": """select 用户名, 访问次数 from 内容库产品 where 用户名 in ('jackjchen', 'robinlee') and 数据日期 = '2020-12-01' """,
},
{
"current_date": "2022-11-06",
"table_name": "内容库产品",
"fields_list": """["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
"question": "内容库近12个月访问人数 按部门",
"prior_schema_links": """[]""",
"analysis": """让我们一步一步地思考。在问题“内容库近12个月访问人数 按部门“中,我们被问:
”内容库近12个月“所以我们需要column=[数据日期]
“访问人数”所以我们需要column=[访问人数]
”按部门“所以我们需要column=[部门]
基于table和columns可能的cell values 是 = [12]。""",
"schema_links":"""["访问人数", "部门", "数据日期", 12]""",
"sql":"""select 部门, 数据日期, 访问人数 from 内容库产品 where datediff('month', 数据日期, '2022-11-06') <= 12 """
},
{ "current_date":"2023-04-21",
"table_name":"内容库产品",
"fields_list":"""["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
"question":"内容库美术部、技术研发部的访问时长",
"prior_schema_links":"""['美术部'->部门, '技术研发部'->部门]""",
"schema_links": """["访问人数", "部门", "数据日期", 12]""",
"sql": """select 部门, 数据日期, 访问人数 from 内容库产品 where datediff('month', 数据日期, '2022-11-06') <= 12 """,
},
{
"current_date": "2023-04-21",
"table_name": "内容库产品",
"fields_list": """["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
"question": "内容库美术部、技术研发部的访问时长",
"prior_schema_links": """['美术部'->部门, '技术研发部'->部门]""",
"analysis": """让我们一步一步地思考。在问题“内容库美术部、技术研发部的访问时长“中,我们被问:
“访问时长”所以我们需要column=[访问时长]
”内容库美术部、技术研发部“所以我们需要column=[部门]
基于table和columns可能的cell values 是 = ['美术部', '技术研发部']。""",
"schema_links":"""["访问时长", "部门", "'美术部'", "'技术研发部'"]""",
"sql":"""select 部门, 访问时长 from 内容库产品 where 部门 in ('美术部', '技术研发部') and 数据日期 = '2023-04-21' """
},
{ "current_date":"2023-08-21",
"table_name":"严选",
"fields_list":"""["严选版权归属系", "付费模式", "结算播放份额", "付费用户结算播放份额", "数据日期"]""",
"question":"近3天海田飞系MPPM结算播放份额",
"prior_schema_links":"""['海田飞系'->严选版权归属系]""",
"schema_links": """["访问时长", "部门", "'美术部'", "'技术研发部'"]""",
"sql": """select 部门, 访问时长 from 内容库产品 where 部门 in ('美术部', '技术研发部') and 数据日期 = '2023-04-21' """,
},
{
"current_date": "2023-08-21",
"table_name": "严选",
"fields_list": """["严选版权归属系", "付费模式", "结算播放份额", "付费用户结算播放份额", "数据日期"]""",
"question": "近3天海田飞系MPPM结算播放份额",
"prior_schema_links": """['海田飞系'->严选版权归属系]""",
"analysis": """让我们一步一步地思考。在问题“近3天海田飞系MPPM结算播放份额“中我们被问
“MPPM结算播放份额”所以我们需要column=[结算播放份额]
”海田飞系“所以我们需要column=[严选版权归属系]
”近3天“所以我们需要column=[数据日期]
基于table和columns可能的cell values 是 = ['海田飞系', 3]。""",
"schema_links":"""["结算播放份额", "严选版权归属系", "数据日期", "'海田飞系'", 3]""",
"sql":"""select 严选版权归属系, 结算播放份额 from 严选 where 严选版权归属系 = '海田飞系' and datediff('day', 数据日期, '2023-08-21') <= 3 """
},
{ "current_date":"2023-05-22",
"table_name":"歌曲库",
"fields_list":"""["是否潮流人歌曲", "C音歌曲ID", "C音歌曲MID", "歌曲名", "歌曲版本", "语种", "歌曲类型", "翻唱类型", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "结算播放量", "运营播放量", "付费用户结算播放量", "历史累计结算播放量", "运营搜播量", "结算搜播量", "运营完播量", "运营推播量", "近7日复播率", "日均搜播量", "数据日期"]""",
"question":"对比近7天翻唱版和纯音乐的歌曲播放量",
"prior_schema_links":"""['纯音乐'->语种, '翻唱版'->歌曲版本]""",
"schema_links": """["结算播放份额", "严选版权归属系", "数据日期", "'海田飞系'", 3]""",
"sql": """select 严选版权归属系, 结算播放份额 from 严选 where 严选版权归属系 = '海田飞系' and datediff('day', 数据日期, '2023-08-21') <= 3 """,
},
{
"current_date": "2023-05-22",
"table_name": "歌曲库",
"fields_list": """["是否潮流人歌曲", "C音歌曲ID", "C音歌曲MID", "歌曲名", "歌曲版本", "语种", "歌曲类型", "翻唱类型", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "结算播放量", "运营播放量", "付费用户结算播放量", "历史累计结算播放量", "运营搜播量", "结算搜播量", "运营完播量", "运营推播量", "近7日复播率", "日均搜播量", "数据日期"]""",
"question": "对比近7天翻唱版和纯音乐的歌曲播放量",
"prior_schema_links": """['纯音乐'->语种, '翻唱版'->歌曲版本]""",
"analysis": """让我们一步一步地思考。在问题“对比近3天翻唱版和纯音乐的歌曲播放量“中我们被问
“歌曲播放量”所以我们需要column=[结算播放量]
”翻唱版“所以我们需要column=[歌曲版本]
”和纯音乐的歌曲“所以我们需要column=[语种]
”近7天“所以我们需要column=[数据日期]
基于table和columns可能的cell values 是 = ['翻唱版', '纯音乐', 7]。""",
"schema_links":"""["结算播放量", "歌曲版本", "语种", "数据日期", "'翻唱版'", "'纯音乐'", 7]""",
"sql":"""select 歌曲版本, 语种, 结算播放量 from 歌曲库 where 歌曲版本 = '翻唱版' and 语种 = '纯音乐' and datediff('day', 数据日期, '2023-05-22') <= 7 """
},
{ "current_date":"2023-05-31",
"table_name":"艺人库",
"fields_list":"""["上下架状态", "歌手名", "歌手等级", "歌手类型", "歌手来源", "MPPM潮流人等级", "活跃区域", "年龄", "歌手才能", "歌手风格", "粉丝数", "潮音粉丝数", "超声波粉丝数", "推博粉丝数", "超声波歌曲数", "在架歌曲数", "超声波分享数", "独占歌曲数", "超声波在架歌曲评论数", "有播放量歌曲数", "数据日期"]""",
"question":"对比一下陈拙悬、孟梅琦、赖媚韵的粉丝数",
"prior_schema_links":"""['1527896'->MPPM歌手ID, '1565463'->MPPM歌手ID, '2141459'->MPPM歌手ID]""",
"schema_links": """["结算播放量", "歌曲版本", "语种", "数据日期", "'翻唱版'", "'纯音乐'", 7]""",
"sql": """select 歌曲版本, 语种, 结算播放量 from 歌曲库 where 歌曲版本 = '翻唱版' and 语种 = '纯音乐' and datediff('day', 数据日期, '2023-05-22') <= 7 """,
},
{
"current_date": "2023-05-31",
"table_name": "艺人库",
"fields_list": """["上下架状态", "歌手名", "歌手等级", "歌手类型", "歌手来源", "MPPM潮流人等级", "活跃区域", "年龄", "歌手才能", "歌手风格", "粉丝数", "潮音粉丝数", "超声波粉丝数", "推博粉丝数", "超声波歌曲数", "在架歌曲数", "超声波分享数", "独占歌曲数", "超声波在架歌曲评论数", "有播放量歌曲数", "数据日期"]""",
"question": "对比一下陈拙悬、孟梅琦、赖媚韵的粉丝数",
"prior_schema_links": """['1527896'->MPPM歌手ID, '1565463'->MPPM歌手ID, '2141459'->MPPM歌手ID]""",
"analysis": """让我们一步一步地思考。在问题“对比一下陈拙悬、孟梅琦、赖媚韵的粉丝数“中,我们被问:
“粉丝数”所以我们需要column=[粉丝数]
”陈拙悬、孟梅琦、赖媚韵“所以我们需要column=[歌手名]
基于table和columns可能的cell values 是 = ['陈拙悬', '孟梅琦', '赖媚韵']。""",
"schema_links":"""["粉丝数", "歌手名", "'陈拙悬'", "'孟梅琦'", "'赖媚韵'"]""",
"sql":"""select 歌手名, 粉丝数 from 艺人库 where 歌手名 in ('陈拙悬', '孟梅琦', '赖媚韵') and 数据日期 = '2023-05-31' """
},
{ "current_date":"2023-07-31",
"table_name":"歌曲库",
"fields_list":"""["歌曲名", "歌曲版本", "歌曲类型", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question":"播放量大于1万的歌曲有多少",
"prior_schema_links":"""[]""",
"schema_links": """["粉丝数", "歌手名", "'陈拙悬'", "'孟梅琦'", "'赖媚韵'"]""",
"sql": """select 歌手名, 粉丝数 from 艺人库 where 歌手名 in ('陈拙悬', '孟梅琦', '赖媚韵') and 数据日期 = '2023-05-31' """,
},
{
"current_date": "2023-07-31",
"table_name": "歌曲库",
"fields_list": """["歌曲名", "歌曲版本", "歌曲类型", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question": "播放量大于1万的歌曲有多少",
"prior_schema_links": """[]""",
"analysis": """让我们一步一步地思考。在问题“播放量大于1万的歌曲有多少“中我们被问
“歌曲有多少”所以我们需要column=[歌曲名]
”播放量大于1万的“所以我们需要column=[结算播放量]
基于table和columns可能的cell values 是 = [10000]。""",
"schema_links":"""["歌曲名", "结算播放量", 10000]""",
"sql":"""select 歌曲名 from 歌曲库 where 结算播放量 > 10000 and 数据日期 = '2023-07-31' """
},
{ "current_date":"2023-07-31",
"table_name":"内容库产品",
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question":"内容库访问时长小于1小时且来自美术部的用户是哪些",
"prior_schema_links":"""['美术部'->部门]""",
"schema_links": """["歌曲名", "结算播放量", 10000]""",
"sql": """select 歌曲名 from 歌曲库 where 结算播放量 > 10000 and 数据日期 = '2023-07-31' """,
},
{
"current_date": "2023-07-31",
"table_name": "内容库产品",
"fields_list": """["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question": "内容库访问时长小于1小时且来自美术部的用户是哪些",
"prior_schema_links": """['美术部'->部门]""",
"analysis": """让我们一步一步地思考。在问题“内容库访问时长小于1小时且来自美术部的用户是哪些“中我们被问
“用户是哪些”所以我们需要column=[用户名]
”美术部的“所以我们需要column=[部门]
”访问时长小于1小时“所以我们需要column=[访问时长]
基于table和columns可能的cell values 是 = ['美术部', 1]。""",
"schema_links":"""["用户名", "部门", "访问时长", "'美术部'", 1]""",
"sql":"""select 用户名 from 内容库产品 where 部门 = '美术部' and 访问时长 < 1 and 数据日期 = '2023-07-31' """
},
{ "current_date":"2023-08-31",
"table_name":"内容库产品",
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question":"内容库pv最高的用户有哪些",
"prior_schema_links":"""[]""",
"schema_links": """["用户名", "部门", "访问时长", "'美术部'", 1]""",
"sql": """select 用户名 from 内容库产品 where 部门 = '美术部' and 访问时长 < 1 and 数据日期 = '2023-07-31' """,
},
{
"current_date": "2023-08-31",
"table_name": "内容库产品",
"fields_list": """["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question": "内容库pv最高的用户有哪些",
"prior_schema_links": """[]""",
"analysis": """让我们一步一步地思考。在问题“内容库pv最高的用户有哪些“中我们被问
“用户有哪些”所以我们需要column=[用户名]
”pv最高的“所以我们需要column=[访问次数]
基于table和columns可能的cell values 是 = []。""",
"schema_links":"""["用户名", "访问次数"]""",
"sql":"""select 用户名 from 内容库产品 where 数据日期 = '2023-08-31' order by 访问次数 desc limit 10 """
},
{ "current_date":"2023-08-31",
"table_name":"艺人库",
"fields_list":"""["播放量层级", "播放量单调性", "播放量方差", "播放量突增类型", "播放量集中度", "歌手名", "歌手等级", "歌手类型", "歌手来源", "MPPM潮流人等级", "结算播放量", "运营播放量", "历史累计结算播放量", "有播放量歌曲数", "历史累计运营播放量", "付费用户结算播放量", "结算播放量占比", "运营播放份额", "免费用户结算播放占比", "完播量", "数据日期"]""",
"question":"近90天袁亚伟播放量平均值是多少",
"prior_schema_links":"""['152789226'->MPPM歌手ID]""",
"schema_links": """["用户名", "访问次数"]""",
"sql": """select 用户名 from 内容库产品 where 数据日期 = '2023-08-31' order by 访问次数 desc limit 10 """,
},
{
"current_date": "2023-08-31",
"table_name": "艺人库",
"fields_list": """["播放量层级", "播放量单调性", "播放量方差", "播放量突增类型", "播放量集中度", "歌手名", "歌手等级", "歌手类型", "歌手来源", "MPPM潮流人等级", "结算播放量", "运营播放量", "历史累计结算播放量", "有播放量歌曲数", "历史累计运营播放量", "付费用户结算播放量", "结算播放量占比", "运营播放份额", "免费用户结算播放占比", "完播量", "数据日期"]""",
"question": "近90天袁亚伟播放量平均值是多少",
"prior_schema_links": """['152789226'->MPPM歌手ID]""",
"analysis": """让我们一步一步地思考。在问题“近90天袁亚伟播放量平均值是多少“中我们被问
“播放量平均值是多少”所以我们需要column=[结算播放量]
”袁亚伟“所以我们需要column=[歌手名]
”近90天“所以我们需要column=[数据日期]
基于table和columns可能的cell values 是 = ['袁亚伟', 90]。""",
"schema_links":"""["结算播放量", "歌手名", "数据日期", "'袁亚伟'", 90]""",
"sql":"""select avg(结算播放量) from 艺人库 where 歌手名 = '袁亚伟' and datediff('day', 数据日期, '2023-08-31') <= 90 """
},
{ "current_date":"2023-08-31",
"table_name":"艺人库",
"fields_list":"""["播放量层级", "播放量单调性", "播放量方差", "播放量突增类型", "播放量集中度", "歌手名", "歌手等级", "歌手类型", "歌手来源", "MPPM潮流人等级", "结算播放量", "运营播放量", "历史累计结算播放量", "有播放量歌曲数", "历史累计运营播放量", "付费用户结算播放量", "结算播放量占比", "运营播放份额", "免费用户结算播放占比", "完播量", "数据日期"]""",
"question":"周倩倩近7天结算播放量总和是多少",
"prior_schema_links":"""['199509'->MPPM歌手ID]""",
"schema_links": """["结算播放量", "歌手名", "数据日期", "'袁亚伟'", 90]""",
"sql": """select avg(结算播放量) from 艺人库 where 歌手名 = '袁亚伟' and datediff('day', 数据日期, '2023-08-31') <= 90 """,
},
{
"current_date": "2023-08-31",
"table_name": "艺人库",
"fields_list": """["播放量层级", "播放量单调性", "播放量方差", "播放量突增类型", "播放量集中度", "歌手名", "歌手等级", "歌手类型", "歌手来源", "MPPM潮流人等级", "结算播放量", "运营播放量", "历史累计结算播放量", "有播放量歌曲数", "历史累计运营播放量", "付费用户结算播放量", "结算播放量占比", "运营播放份额", "免费用户结算播放占比", "完播量", "数据日期"]""",
"question": "周倩倩近7天结算播放量总和是多少",
"prior_schema_links": """['199509'->MPPM歌手ID]""",
"analysis": """让我们一步一步地思考。在问题“周倩倩近7天结算播放量总和是多少“中我们被问
“结算播放量总和是多少”所以我们需要column=[结算播放量]
”周倩倩“所以我们需要column=[歌手名]
”近7天“所以我们需要column=[数据日期]
基于table和columns可能的cell values 是 = ['周倩倩', 7]。""",
"schema_links":"""["结算播放量", "歌手名", "数据日期", "'周倩倩'", 7]""",
"sql":"""select sum(结算播放量) from 艺人库 where 歌手名 = '周倩倩' and datediff('day', 数据日期, '2023-08-31') <= 7 """
},
{ "current_date":"2023-09-14",
"table_name":"内容库产品",
"fields_list":"""["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
"question":"内容库访问次数大于1k的部门是哪些",
"prior_schema_links":"""[]""",
"schema_links": """["结算播放量", "歌手名", "数据日期", "'周倩倩'", 7]""",
"sql": """select sum(结算播放量) from 艺人库 where 歌手名 = '周倩倩' and datediff('day', 数据日期, '2023-08-31') <= 7 """,
},
{
"current_date": "2023-09-14",
"table_name": "内容库产品",
"fields_list": """["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
"question": "内容库访问次数大于1k的部门是哪些",
"prior_schema_links": """[]""",
"analysis": """让我们一步一步地思考。在问题“内容库访问次数大于1k的部门是哪些“中我们被问
“部门是哪些”所以我们需要column=[部门]
”访问次数大于1k的“所以我们需要column=[访问次数]
基于table和columns可能的cell values 是 = [1000]。""",
"schema_links":"""["部门", "访问次数", 1000]""",
"sql":"""select 部门 from 内容库产品 where 访问次数 > 1000 and 数据日期 = '2023-09-14' """
},
{ "current_date":"2023-09-18",
"table_name":"歌曲库",
"fields_list":"""["歌曲名", "MPPM歌手ID", "歌曲版本", "歌曲类型", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question":"陈亿训唱的所有的播放量大于20k的孤勇者有哪些",
"prior_schema_links":"""['199509'->MPPM歌手ID, '1527123'->MPPM歌曲ID]""",
"schema_links": """["部门", "访问次数", 1000]""",
"sql": """select 部门 from 内容库产品 where 访问次数 > 1000 and 数据日期 = '2023-09-14' """,
},
{
"current_date": "2023-09-18",
"table_name": "歌曲库",
"fields_list": """["歌曲名", "MPPM歌手ID", "歌曲版本", "歌曲类型", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question": "陈亿训唱的所有的播放量大于20k的孤勇者有哪些",
"prior_schema_links": """['199509'->MPPM歌手ID, '1527123'->MPPM歌曲ID]""",
"analysis": """让我们一步一步地思考。在问题“陈亿训唱的所有的播放量大于20k的孤勇者有哪些“中我们被问
“孤勇者有哪些”所以我们需要column=[歌曲名]
”播放量大于20k的“所以我们需要column=[结算播放量]
”陈亿训唱的“所以我们需要column=[歌手名]
基于table和columns可能的cell values 是 = [20000, '陈亿训', '孤勇者']。""",
"schema_links":"""["歌曲名", "结算播放量", "歌手名", 20000, "'陈亿训'", "'孤勇者'"]""",
"sql":"""select 歌曲名 from 歌曲库 where 结算播放量 > 20000 and 歌手名 = '陈亿训' and 歌曲名 = '孤勇者' and 数据日期 = '2023-09-18' """
},
{ "current_date":"2023-09-18",
"table_name":"歌曲库",
"fields_list":"""["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question":"周洁轮去年发布的歌曲有哪些",
"prior_schema_links":"""['23109'->MPPM歌手ID]""",
"schema_links": """["歌曲名", "结算播放量", "歌手名", 20000, "'陈亿训'", "'孤勇者'"]""",
"sql": """select 歌曲名 from 歌曲库 where 结算播放量 > 20000 and 歌手名 = '陈亿训' and 歌曲名 = '孤勇者' and 数据日期 = '2023-09-18' """,
},
{
"current_date": "2023-09-18",
"table_name": "歌曲库",
"fields_list": """["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question": "周洁轮去年发布的歌曲有哪些",
"prior_schema_links": """['23109'->MPPM歌手ID]""",
"analysis": """让我们一步一步地思考。在问题“周洁轮去年发布的歌曲有哪些“中,我们被问:
“歌曲有哪些”所以我们需要column=[歌曲名]
”去年发布的“所以我们需要column=[发布时间]
”周洁轮“所以我们需要column=[歌手名]
基于table和columns可能的cell values 是 = ['周洁轮', 1]。""",
"schema_links":"""["歌曲名", "发布时间", "歌手名", 1, "'周洁轮'"]""",
"sql":"""select 歌曲名 from 歌曲库 where datediff('year', 发布时间, '2023-09-18') <= 1 and 歌手名 = '周洁轮' and 数据日期 = '2023-09-18' """
},
{ "current_date":"2023-09-11",
"table_name":"艺人库",
"fields_list":"""["播放量层级", "播放量单调性", "播放量方差", "播放量突增类型", "播放量集中度", "歌手名", "歌手等级", "歌手类型", "歌手来源", "签约日期", "MPPM潮流人等级", "结算播放量", "运营播放量", "历史累计结算播放量", "有播放量歌曲数", "历史累计运营播放量", "付费用户结算播放量", "结算播放量占比", "运营播放份额", "免费用户结算播放占比", "完播量", "数据日期"]""",
"question":"我想要近半年签约的播放量前十的歌手有哪些",
"prior_schema_links":"""[]""",
"schema_links": """["歌曲名", "发布时间", "歌手名", 1, "'周洁轮'"]""",
"sql": """select 歌曲名 from 歌曲库 where datediff('year', 发布时间, '2023-09-18') <= 1 and 歌手名 = '周洁轮' and 数据日期 = '2023-09-18' """,
},
{
"current_date": "2023-09-11",
"table_name": "艺人库",
"fields_list": """["播放量层级", "播放量单调性", "播放量方差", "播放量突增类型", "播放量集中度", "歌手名", "歌手等级", "歌手类型", "歌手来源", "签约日期", "MPPM潮流人等级", "结算播放量", "运营播放量", "历史累计结算播放量", "有播放量歌曲数", "历史累计运营播放量", "付费用户结算播放量", "结算播放量占比", "运营播放份额", "免费用户结算播放占比", "完播量", "数据日期"]""",
"question": "我想要近半年签约的播放量前十的歌手有哪些",
"prior_schema_links": """[]""",
"analysis": """让我们一步一步地思考。在问题“我想要近半年签约的播放量前十的歌手“中,我们被问:
“歌手有哪些”所以我们需要column=[歌手名]
”播放量前十的“所以我们需要column=[结算播放量]
”近半年签约的“所以我们需要column=[签约日期]
基于table和columns可能的cell values 是 = [0.5, 10]。""",
"schema_links":"""["歌手名", "结算播放量", "签约日期", 0.5, 10]""",
"sql":"""select 歌手名 from 艺人库 where datediff('year', 签约日期, '2023-09-11') <= 0.5 and 数据日期 = '2023-09-11' order by 结算播放量 desc limit 10"""
},
{ "current_date":"2023-08-12",
"table_name":"歌曲库",
"schema_links": """["歌手名", "结算播放量", "签约日期", 0.5, 10]""",
"sql": """select 歌手名 from 艺人库 where datediff('year', 签约日期, '2023-09-11') <= 0.5 and 数据日期 = '2023-09-11' order by 结算播放量 desc limit 10""",
},
{
"current_date": "2023-08-12",
"table_name": "歌曲库",
"fields_list": """["发行日期", "歌曲语言", "歌曲来源", "歌曲流派", "歌曲名", "歌曲版本", "歌曲类型", "发行时间", "数据日期"]""",
"question":"最近一年发行的歌曲中有哪些在近7天播放超过一千万的",
"prior_schema_links":"""[]""",
"question": "最近一年发行的歌曲中有哪些在近7天播放超过一千万的",
"prior_schema_links": """[]""",
"analysis": """让我们一步一步地思考。在问题“最近一年发行的歌曲中有哪些在近7天播放超过一千万的“中我们被问
“发行的歌曲中有哪些”所以我们需要column=[歌曲名]
”最近一年发行的“所以我们需要column=[发行日期]
”在近7天播放超过一千万的“所以我们需要column=[数据日期, 结算播放量]
基于table和columns可能的cell values 是 = [1, 10000000]""",
"schema_links":"""["歌曲名", "发行日期", "数据日期", "结算播放量", 1, 10000000]""",
"sql":"""select 歌曲名 from 歌曲库 where datediff('year', 发行日期, '2023-08-12') <= 1 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000"""
},
{ "current_date":"2023-08-12",
"table_name":"歌曲库",
"schema_links": """["歌曲名", "发行日期", "数据日期", "结算播放量", 1, 10000000]""",
"sql": """select 歌曲名 from 歌曲库 where datediff('year', 发行日期, '2023-08-12') <= 1 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000""",
},
{
"current_date": "2023-08-12",
"table_name": "歌曲库",
"fields_list": """["发行日期", "歌曲语言", "歌曲来源", "歌曲流派", "歌曲名", "歌曲版本", "歌曲类型", "发行时间", "数据日期"]""",
"question":"今年以来发行的歌曲中有哪些在近7天播放超过一千万的",
"prior_schema_links":"""[]""",
"question": "今年以来发行的歌曲中有哪些在近7天播放超过一千万的",
"prior_schema_links": """[]""",
"analysis": """让我们一步一步地思考。在问题“今年以来发行的歌曲中有哪些在近7天播放超过一千万的“中我们被问
“发行的歌曲中有哪些”所以我们需要column=[歌曲名]
”今年以来发行的“所以我们需要column=[发行日期]
”在近7天播放超过一千万的“所以我们需要column=[数据日期, 结算播放量]
基于table和columns可能的cell values 是 = [0, 7, 10000000]""",
"schema_links":"""["歌曲名", "发行日期", "数据日期", "结算播放量", 0, 7, 10000000]""",
"sql":"""select 歌曲名 from 歌曲库 where datediff('year', 发行日期, '2023-08-12') <= 0 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000"""
},
{ "current_date":"2023-08-12",
"table_name":"歌曲库",
"schema_links": """["歌曲名", "发行日期", "数据日期", "结算播放量", 0, 7, 10000000]""",
"sql": """select 歌曲名 from 歌曲库 where datediff('year', 发行日期, '2023-08-12') <= 0 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000""",
},
{
"current_date": "2023-08-12",
"table_name": "歌曲库",
"fields_list": """["发行日期", "歌曲语言", "歌曲来源", "歌曲流派", "歌曲名", "歌曲版本", "歌曲类型", "发行时间", "数据日期"]""",
"question":"2023年以来发行的歌曲中有哪些在近7天播放超过一千万的",
"prior_schema_links":"""['514129144'->MPPM歌曲ID]""",
"question": "2023年以来发行的歌曲中有哪些在近7天播放超过一千万的",
"prior_schema_links": """['514129144'->MPPM歌曲ID]""",
"analysis": """让我们一步一步地思考。在问题“2023年以来发行的歌曲中有哪些在近7天播放超过一千万的“中我们被问
“发行的歌曲中有哪些”所以我们需要column=[歌曲名]
”2023年以来发行的“所以我们需要column=[发行日期]
”在近7天播放超过一千万的“所以我们需要column=[数据日期, 结算播放量]
基于table和columns可能的cell values 是 = [2023, 7, 10000000]""",
"schema_links":"""["歌曲名", "发行日期", "数据日期", "结算播放量", 2023, 7, 10000000]""",
"sql":"""select 歌曲名 from 歌曲库 where YEAR(发行日期) >= 2023 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000"""
},
{ "current_date":"2023-08-01",
"table_name":"歌曲库",
"fields_list":"""["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question":"周洁轮2023年6月之后发布的歌曲有哪些",
"prior_schema_links":"""['23109'->MPPM歌手ID]""",
"schema_links": """["歌曲名", "发行日期", "数据日期", "结算播放量", 2023, 7, 10000000]""",
"sql": """select 歌曲名 from 歌曲库 where YEAR(发行日期) >= 2023 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000""",
},
{
"current_date": "2023-08-01",
"table_name": "歌曲库",
"fields_list": """["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question": "周洁轮2023年6月之后发布的歌曲有哪些",
"prior_schema_links": """['23109'->MPPM歌手ID]""",
"analysis": """让我们一步一步地思考。在问题“周洁轮2023年6月之后发布的歌曲有哪些“中我们被问
“歌曲有哪些”所以我们需要column=[歌曲名]
”2023年6月之后发布的“所以我们需要column=[发布时间]
”周洁轮“所以我们需要column=[歌手名]
基于table和columns可能的cell values 是 = ['周洁轮', 2023, 6]。""",
"schema_links":"""["歌曲名", "发布时间", "歌手名", "周洁轮", 2023, 6]""",
"sql":"""select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 2023 and MONTH(发布时间) >= 6 and 歌手名 = '周洁轮' and 数据日期 = '2023-08-01' """
},
{ "current_date":"2023-08-01",
"table_name":"歌曲库",
"fields_list":"""["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question":"邓梓琦在2023年1月5日之后发布的歌曲中有哪些播放量大于500W的",
"prior_schema_links":"""['2312311'->MPPM歌手ID]""",
"schema_links": """["歌曲名", "发布时间", "歌手名", "周洁轮", 2023, 6]""",
"sql": """select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 2023 and MONTH(发布时间) >= 6 and 歌手名 = '周洁轮' and 数据日期 = '2023-08-01' """,
},
{
"current_date": "2023-08-01",
"table_name": "歌曲库",
"fields_list": """["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question": "邓梓琦在2023年1月5日之后发布的歌曲中有哪些播放量大于500W的",
"prior_schema_links": """['2312311'->MPPM歌手ID]""",
"analysis": """让我们一步一步地思考。在问题“邓梓琦在2023年1月5日之后发布的歌曲中有哪些播放量大于500W的“中我们被问
“播放量大于500W的”所以我们需要column=[结算播放量]
”邓梓琦在2023年1月5日之后发布的“所以我们需要column=[发布时间]
”邓梓琦“所以我们需要column=[歌手名]
基于table和columns可能的cell values 是 = ['邓梓琦', 2023, 1, 5, 5000000]。""",
"schema_links":"""["结算播放量", "发布时间", "歌手名", "邓梓琦", 2023, 1, 5, 5000000]""",
"sql":"""select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 2023 and MONTH(发布时间) >= 1 and DAY(发布时间) >= 5 and 歌手名 = '邓梓琦' and 结算播放量 > 5000000 and 数据日期 = '2023-08-01'"""
},
{ "current_date":"2023-09-17",
"table_name":"歌曲库",
"fields_list":"""["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question":"2023年6月以后张亮英播放量大于200万的歌曲有哪些",
"prior_schema_links":"""['45453'->MPPM歌手ID]""",
"schema_links": """["结算播放量", "发布时间", "歌手名", "邓梓琦", 2023, 1, 5, 5000000]""",
"sql": """select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 2023 and MONTH(发布时间) >= 1 and DAY(发布时间) >= 5 and 歌手名 = '邓梓琦' and 结算播放量 > 5000000 and 数据日期 = '2023-08-01'""",
},
{
"current_date": "2023-09-17",
"table_name": "歌曲库",
"fields_list": """["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question": "2023年6月以后张亮英播放量大于200万的歌曲有哪些",
"prior_schema_links": """['45453'->MPPM歌手ID]""",
"analysis": """让我们一步一步地思考。在问题“2023年6月以后张亮英播放量大于200万的歌曲有哪些“中我们被问
“播放量大于200万的”所以我们需要column=[结算播放量]
”2023年6月以后张亮英“所以我们需要column=[数据日期, 歌手名]
”歌曲有哪些“所以我们需要column=[歌曲名]
基于table和columns可能的cell values 是 = ['张亮英', 2023, 6, 2000000]。""",
"schema_links":"""["结算播放量", "数据日期", "歌手名", "张亮英", 2023, 6, 2000000]""",
"sql":"""select 歌曲名 from 歌曲库 where YEAR(数据日期) >= 2023 and MONTH(数据日期) >= 6 and 歌手名 = '张亮英' and 结算播放量 > 2000000 """
},
{ "current_date":"2023-08-16",
"table_name":"歌曲库",
"fields_list":"""["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question":"2021年6月以后发布的李雨纯的播放量大于20万的歌曲有哪些",
"prior_schema_links":"""['23109'->MPPM歌手ID]""",
"schema_links": """["结算播放量", "数据日期", "歌手名", "张亮英", 2023, 6, 2000000]""",
"sql": """select 歌曲名 from 歌曲库 where YEAR(数据日期) >= 2023 and MONTH(数据日期) >= 6 and 歌手名 = '张亮英' and 结算播放量 > 2000000 """,
},
{
"current_date": "2023-08-16",
"table_name": "歌曲库",
"fields_list": """["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question": "2021年6月以后发布的李雨纯的播放量大于20万的歌曲有哪些",
"prior_schema_links": """['23109'->MPPM歌手ID]""",
"analysis": """让我们一步一步地思考。在问题“2021年6月以后发布的李雨纯的播放量大于20万的歌曲有哪些“中我们被问
“播放量大于20万的”所以我们需要column=[结算播放量]
”2021年6月以后发布的“所以我们需要column=[发布时间]
”李雨纯“所以我们需要column=[歌手名]
基于table和columns可能的cell values 是 = ['李雨纯', 2021, 6, 200000]。""",
"schema_links":"""["结算播放量", "发布时间", "歌手名", "李雨纯", 2021, 6, 200000]""",
"sql":"""select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 2021 and MONTH(发布时间) >= 6 and 歌手名 = '李雨纯' and 结算播放量 > 200000 and 数据日期 = '2023-08-16'"""
},
{ "current_date":"2023-08-16",
"table_name":"歌曲库",
"fields_list":"""["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question":"刘锝桦在1992年4月2日到2020年5月2日之间发布的播放量大于20万的歌曲有哪些",
"prior_schema_links":"""['4234234'->MPPM歌手ID]""",
"schema_links": """["结算播放量", "发布时间", "歌手名", "李雨纯", 2021, 6, 200000]""",
"sql": """select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 2021 and MONTH(发布时间) >= 6 and 歌手名 = '李雨纯' and 结算播放量 > 200000 and 数据日期 = '2023-08-16'""",
},
{
"current_date": "2023-08-16",
"table_name": "歌曲库",
"fields_list": """["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
"question": "刘锝桦在1992年4月2日到2020年5月2日之间发布的播放量大于20万的歌曲有哪些",
"prior_schema_links": """['4234234'->MPPM歌手ID]""",
"analysis": """让我们一步一步地思考。在问题“刘锝桦在1992年4月2日到2020年5月2日之间发布的播放量大于20万的歌曲有哪些“中我们被问
“播放量大于20万的”所以我们需要column=[结算播放量]
”1992年4月2日到2020年5月2日之间发布的“所以我们需要column=[发布时间]
”刘锝桦“所以我们需要column=[歌手名]
基于table和columns可能的cell values 是 = ['刘锝桦', 1992, 4, 2, 2020, 5, 2, 200000]。""",
"schema_links":"""["结算播放量", "发布时间", "歌手名", "刘锝桦", 1992, 4, 2, 2020, 5, 2, 200000]""",
"sql":"""select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 1992 and MONTH(发布时间) >= 4 and DAY(发布时间) >= 2 and YEAR(发布时间) <= 2020 and MONTH(发布时间) <= 5 and DAY(发布时间) <= 2 and 歌手名 = '刘锝桦' and 结算播放量 > 200000 and 数据日期 = '2023-08-16'"""
},
"schema_links": """["结算播放量", "发布时间", "歌手名", "刘锝桦", 1992, 4, 2, 2020, 5, 2, 200000]""",
"sql": """select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 1992 and MONTH(发布时间) >= 4 and DAY(发布时间) >= 2 and YEAR(发布时间) <= 2020 and MONTH(发布时间) <= 5 and DAY(发布时间) <= 2 and 歌手名 = '刘锝桦' and 结算播放量 > 200000 and 数据日期 = '2023-08-16'""",
},
{
"current_date":"2023-09-04",
"table_name":"内容库产品",
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question":"内容库近30天访问次数的平均数",
"prior_schema_links":"""[]""",
"current_date": "2023-09-04",
"table_name": "内容库产品",
"fields_list": """["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question": "内容库近30天访问次数的平均数",
"prior_schema_links": """[]""",
"analysis": """让我们一步一步地思考。在问题“内容库近30天访问次数的平均数“中我们被问
“访问次数的平均数”所以我们需要column=[访问次数]
”内容库近30天“所以我们需要column=[数据日期]
基于table和columns可能的cell values 是 = [30]。""",
"schema_links":"""["访问次数", "数据日期", 30]""",
"sql":"""select avg(访问次数) from 内容库产品 where datediff('day', 数据日期, '2023-09-04') <= 30 """
},
"schema_links": """["访问次数", "数据日期", 30]""",
"sql": """select avg(访问次数) from 内容库产品 where datediff('day', 数据日期, '2023-09-04') <= 30 """,
},
{
"current_date":"2023-09-04",
"table_name":"内容库产品",
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question":"内容库近半年哪个月的访问次数汇总最高",
"prior_schema_links":"""[]""",
"current_date": "2023-09-04",
"table_name": "内容库产品",
"fields_list": """["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question": "内容库近半年哪个月的访问次数汇总最高",
"prior_schema_links": """[]""",
"analysis": """让我们一步一步地思考。在问题“内容库近半年哪个月的访问次数汇总最高“中,我们被问:
“访问次数汇总最高”所以我们需要column=[访问次数]
”内容库近半年“所以我们需要column=[数据日期]
基于table和columns可能的cell values 是 = [0.5]。""",
"schema_links":"""["访问次数", "数据日期", 0.5]""",
"sql":"""select MONTH(数据日期), sum(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期) order by sum(访问次数) desc limit 1 """
},
"schema_links": """["访问次数", "数据日期", 0.5]""",
"sql": """select MONTH(数据日期), sum(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期) order by sum(访问次数) desc limit 1 """,
},
{
"current_date":"2023-09-04",
"table_name":"内容库产品",
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question":"内容库近半年每个月的平均访问次数",
"prior_schema_links":"""[]""",
"current_date": "2023-09-04",
"table_name": "内容库产品",
"fields_list": """["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question": "内容库近半年每个月的平均访问次数",
"prior_schema_links": """[]""",
"analysis": """让我们一步一步地思考。在问题“内容库近半年每个月的平均访问次数“中,我们被问:
“每个月的平均访问次数”所以我们需要column=[访问次数]
”内容库近半年“所以我们需要column=[数据日期]
基于table和columns可能的cell values 是 = [0.5]。""",
"schema_links":"""["访问次数", "数据日期", 0.5]""",
"sql":"""select MONTH(数据日期), avg(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期) """
},
"schema_links": """["访问次数", "数据日期", 0.5]""",
"sql": """select MONTH(数据日期), avg(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期) """,
},
{
"current_date":"2023-09-10",
"table_name":"内容库产品",
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question":"内容库 按部门统计访问次数 top10 的部门",
"prior_schema_links":"""[]""",
"current_date": "2023-09-10",
"table_name": "内容库产品",
"fields_list": """["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
"question": "内容库 按部门统计访问次数 top10 的部门",
"prior_schema_links": """[]""",
"analysis": """让我们一步一步地思考。在问题“内容库 按部门统计访问次数 top10 的部门“中,我们被问:
“访问次数 top10 的部门”所以我们需要column=[访问次数]
”内容库 按部门统计“所以我们需要column=[部门]
基于table和columns可能的cell values 是 = [10]。""",
"schema_links":"""["访问次数", "部门", 10]""",
"sql":"""select 部门, sum(访问次数) from 内容库产品 group by 部门 order by sum(访问次数) desc limit 10 """
}
"schema_links": """["访问次数", "部门", 10]""",
"sql": """select 部门, sum(访问次数) from 内容库产品 group by 部门 order by sum(访问次数) desc limit 10 """,
},
]

View File

@@ -23,6 +23,7 @@ def construct_plugin_prompt(tool_config):
prompt += example + "\n"
return prompt
def construct_plugin_pool_prompt(tool_config_list):
tool_explain_list = []
for tool_config in tool_config_list:
@@ -35,15 +36,20 @@ def construct_plugin_pool_prompt(tool_config_list):
def construct_task_prompt(query_text, tool_explain_list_str):
instruction = """问题为:{query_text}\n请根据问题和工具的描述选择对应的工具完成任务。请注意只能选择1个工具。请一步一步地分析选择工具的原因(每个工具的【工具适用问题示例】是选择的重要参考依据)并给出最终选择输出格式为json,key为分析过程, ’选择工具‘""".format(query_text=query_text)
instruction = """问题为:{query_text}\n请根据问题和工具的描述选择对应的工具完成任务。请注意只能选择1个工具。请一步一步地分析选择工具的原因(每个工具的【工具适用问题示例】是选择的重要参考依据)并给出最终选择输出格式为json,key为分析过程, ’选择工具‘""".format(
query_text=query_text
)
prompt = "工具选择如下:\n\n{tool_explain_list_str}\n\n【任务说明】\n{instruction}".format(instruction=instruction, tool_explain_list_str=tool_explain_list_str)
prompt = "工具选择如下:\n\n{tool_explain_list_str}\n\n【任务说明】\n{instruction}".format(
instruction=instruction, tool_explain_list_str=tool_explain_list_str
)
return prompt
def plugin_selection_output_parse(llm_output: str)-> Union[Mapping[str, str], None]:
def plugin_selection_output_parse(llm_output: str) -> Union[Mapping[str, str], None]:
try:
pattern = r'\{[^{}]+\}'
pattern = r"\{[^{}]+\}"
find_result = re.findall(pattern, llm_output)
result = find_result[0].strip()
@@ -52,12 +58,13 @@ def plugin_selection_output_parse(llm_output: str)-> Union[Mapping[str, str], No
result_dict = json.loads(result)
print("result_dict: ", result_dict)
key_mapping = {
"分析过程":"analysis",
"选择工具":"toolSelection"
}
key_mapping = {"分析过程": "analysis", "选择工具": "toolSelection"}
converted_result_dict = {key_mapping[key]: value for key, value in result_dict.items() if key in key_mapping}
converted_result_dict = {
key_mapping[key]: value
for key, value in result_dict.items()
if key in key_mapping
}
except Exception as e:
print(e)
@@ -65,7 +72,10 @@ def plugin_selection_output_parse(llm_output: str)-> Union[Mapping[str, str], No
return converted_result_dict
def plugins_config_format_convert(plugin_config_list: List[Mapping[str, Any]]) -> List[Mapping[str, Any]]:
def plugins_config_format_convert(
plugin_config_list: List[Mapping[str, Any]]
) -> List[Mapping[str, Any]]:
plugin_config_list_new = []
for plugin_config in plugin_config_list:
plugin_config_new = dict()
@@ -75,7 +85,9 @@ def plugins_config_format_convert(plugin_config_list: List[Mapping[str, Any]]) -
parameters = plugin_config["parameters"]
examples_str = "\n".join(examples)
description_new = """{plugin_desc}\n\n例如能够处理如下问题:\n{examples_str}""".format(plugin_desc=description, examples_str=examples_str)
description_new = """{plugin_desc}\n\n例如能够处理如下问题:\n{examples_str}""".format(
plugin_desc=description, examples_str=examples_str
)
plugin_config_new["name"] = name
plugin_config_new["description"] = description_new
@@ -84,4 +96,3 @@ def plugins_config_format_convert(plugin_config_list: List[Mapping[str, Any]]) -
plugin_config_list_new.append(plugin_config_new)
return plugin_config_list_new

View File

@@ -10,11 +10,18 @@ import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from plugin_call.prompt_construct import construct_plugin_pool_prompt, construct_task_prompt, plugin_selection_output_parse, plugins_config_format_convert
from plugin_call.prompt_construct import (
construct_plugin_pool_prompt,
construct_task_prompt,
plugin_selection_output_parse,
plugins_config_format_convert,
)
from util.llm_instance import llm
def plugin_selection_run(query_text: str, plugin_configs: List[Mapping[str, Any]])-> Union[Mapping[str, str], None]:
def plugin_selection_run(
query_text: str, plugin_configs: List[Mapping[str, Any]]
) -> Union[Mapping[str, str], None]:
tools_prompt = construct_plugin_pool_prompt(plugin_configs)
@@ -23,4 +30,3 @@ def plugin_selection_run(query_text: str, plugin_configs: List[Mapping[str, Any]
parsed_output = plugin_selection_output_parse(llm_output)
return parsed_output

View File

@@ -11,7 +11,7 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
def get_ids(documents:List[str]) -> List[str]:
def get_ids(documents: List[str]) -> List[str]:
ids = []
for doc in documents:
ids.append(str(uuid.uuid5(uuid.NAMESPACE_URL, doc)))
@@ -19,25 +19,23 @@ def get_ids(documents:List[str]) -> List[str]:
return ids
def add2preset_query_collection(collection:Collection,
preset_queries:List[str],
preset_query_ids:List[str]
) -> None:
def add2preset_query_collection(
collection: Collection, preset_queries: List[str], preset_query_ids: List[str]
) -> None:
collection.add(documents=preset_queries,
ids=preset_query_ids)
collection.add(documents=preset_queries, ids=preset_query_ids)
def update_preset_query_collection(collection:Collection,
preset_queries:List[str],
preset_query_ids:List[str]
) -> None:
def update_preset_query_collection(
collection: Collection, preset_queries: List[str], preset_query_ids: List[str]
) -> None:
collection.update(documents=preset_queries,
ids=preset_query_ids)
collection.update(documents=preset_queries, ids=preset_query_ids)
def query2preset_query_collection(collection:Collection, query_texts:List[str], n_results:int=10):
def query2preset_query_collection(
collection: Collection, query_texts: List[str], n_results: int = 10
):
collection_cnt = collection.count()
min_n_results = 10
min_n_results = min(collection_cnt, min_n_results)
@@ -56,12 +54,13 @@ def query2preset_query_collection(collection:Collection, query_texts:List[str],
return res
def parse_retrieval_preset_query(res:List[Mapping[str, Any]]):
parsed_res = [[] for _ in range(0, len(res['ids']))]
retrieval_ids = res['ids']
retrieval_distances = res['distances']
retrieval_sentences = res['documents']
def parse_retrieval_preset_query(res: List[Mapping[str, Any]]):
parsed_res = [[] for _ in range(0, len(res["ids"]))]
retrieval_ids = res["ids"]
retrieval_distances = res["distances"]
retrieval_sentences = res["documents"]
for query_idx in range(0, len(retrieval_ids)):
id_ls = retrieval_ids[query_idx]
@@ -73,43 +72,41 @@ def parse_retrieval_preset_query(res:List[Mapping[str, Any]]):
distance = distance_ls[idx]
sentence = sentence_ls[idx]
parsed_res[query_idx].append({
'id': id,
'distance': distance,
'presetQuery': sentence
})
parsed_res[query_idx].append(
{"id": id, "distance": distance, "presetQuery": sentence}
)
return parsed_res
def preset_query_retrieval_format(query_list:List[str], retrieval_list:List[Mapping[str, Any]]):
def preset_query_retrieval_format(
query_list: List[str], retrieval_list: List[Mapping[str, Any]]
):
res = []
for query_idx in range(0, len(query_list)):
query = query_list[query_idx]
retrieval = retrieval_list[query_idx]
res.append({
'query': query,
'retrieval': retrieval
})
res.append({"query": query, "retrieval": retrieval})
return res
def empty_preset_query_collection(collection:Collection) -> None:
def empty_preset_query_collection(collection: Collection) -> None:
collection.delete()
def delete_preset_query_by_ids(collection:Collection, preset_query_ids:List[str]) -> None:
def delete_preset_query_by_ids(
collection: Collection, preset_query_ids: List[str]
) -> None:
collection.delete(ids=preset_query_ids)
def get_preset_query_by_ids(collection:Collection, preset_query_ids:List[str]):
def get_preset_query_by_ids(collection: Collection, preset_query_ids: List[str]):
res = collection.get(ids=preset_query_ids)
return res
def preset_query_collection_size(collection:Collection) -> int:
def preset_query_collection_size(collection: Collection) -> int:
return collection.count()

View File

@@ -13,9 +13,15 @@ from chromadb.api import Collection, Documents, Embeddings
from langchain.llms import OpenAI
from preset_query_db import (get_ids, add2preset_query_collection,
query2preset_query_collection, parse_retrieval_preset_query,
preset_query_retrieval_format, empty_preset_query_collection, preset_query_collection_size)
from preset_query_db import (
get_ids,
add2preset_query_collection,
query2preset_query_collection,
parse_retrieval_preset_query,
preset_query_retrieval_format,
empty_preset_query_collection,
preset_query_collection_size,
)
from util.text2vec import Text2VecEmbeddingFunction
@@ -25,22 +31,27 @@ from util.chromadb_instance import client
emb_func = Text2VecEmbeddingFunction()
collection = client.get_or_create_collection(name=PRESET_QUERY_COLLECTION_NAME,
embedding_function=emb_func,
metadata={"hnsw:space": "cosine"}
) # Get a collection object from an existing collection, by name. If it doesn't exist, create it.
collection = client.get_or_create_collection(
name=PRESET_QUERY_COLLECTION_NAME,
embedding_function=emb_func,
metadata={"hnsw:space": "cosine"},
) # Get a collection object from an existing collection, by name. If it doesn't exist, create it.
print("init_preset_query_collection_size: ", preset_query_collection_size(collection))
def preset_query_retrieval_run(collection:Collection, query_texts_list:List[str], n_results:int=5):
retrieval_res = query2preset_query_collection(collection=collection,
query_texts=query_texts_list,
n_results=n_results)
def preset_query_retrieval_run(
collection: Collection, query_texts_list: List[str], n_results: int = 5
):
retrieval_res = query2preset_query_collection(
collection=collection, query_texts=query_texts_list, n_results=n_results
)
parsed_retrieval_res = parse_retrieval_preset_query(retrieval_res)
parsed_retrieval_res_format = preset_query_retrieval_format(query_texts_list, parsed_retrieval_res)
parsed_retrieval_res_format = preset_query_retrieval_format(
query_texts_list, parsed_retrieval_res
)
print('parsed_retrieval_res_format: ', parsed_retrieval_res_format)
print("parsed_retrieval_res_format: ", parsed_retrieval_res_format)
return parsed_retrieval_res_format

View File

@@ -11,7 +11,7 @@ OPENAI_API_KEY = "YOUR_API_KEY"
TEMPERATURE = 0.0
CHROMA_DB_PERSIST_DIR = 'chm_db'
CHROMA_DB_PERSIST_DIR = "chm_db"
PRESET_QUERY_COLLECTION_NAME = "preset_query_collection"
TEXT2DSL_COLLECTION_NAME = "text2dsl_collection"
TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM = 15
@@ -21,9 +21,9 @@ CHROMA_DB_PERSIST_PATH = os.path.join(PROJECT_DIR_PATH, CHROMA_DB_PERSIST_DIR)
HF_TEXT2VEC_MODEL_NAME = "GanymedeNil/text2vec-large-chinese"
if __name__ == '__main__':
print('PROJECT_DIR_PATH: ', PROJECT_DIR_PATH)
print('EMB_MODEL_PATH: ', HF_TEXT2VEC_MODEL_NAME)
print('CHROMA_DB_PERSIST_PATH: ', CHROMA_DB_PERSIST_PATH)
print('LLMPARSER_HOST: ', LLMPARSER_HOST)
print('LLMPARSER_PORT: ', LLMPARSER_PORT)
if __name__ == "__main__":
print("PROJECT_DIR_PATH: ", PROJECT_DIR_PATH)
print("EMB_MODEL_PATH: ", HF_TEXT2VEC_MODEL_NAME)
print("CHROMA_DB_PERSIST_PATH: ", CHROMA_DB_PERSIST_PATH)
print("LLMPARSER_HOST: ", LLMPARSER_HOST)
print("LLMPARSER_PORT: ", LLMPARSER_PORT)

View File

@@ -22,20 +22,34 @@ from util.text2vec import Text2VecEmbeddingFunction, hg_embedding
from util.chromadb_instance import client as chromadb_client, empty_chroma_collection_2
from run_config import TEXT2DSL_COLLECTION_NAME, TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
def reload_sql_example_collection(vectorstore:Chroma,
sql_examplars:List[Mapping[str, str]],
sql_example_selector:SemanticSimilarityExampleSelector,
example_nums:int
):
def reload_sql_example_collection(
vectorstore: Chroma,
sql_examplars: List[Mapping[str, str]],
sql_example_selector: SemanticSimilarityExampleSelector,
example_nums: int,
):
print("original sql_examples_collection size:", vectorstore._collection.count())
new_collection = empty_chroma_collection_2(collection=vectorstore._collection)
vectorstore._collection = new_collection
print("emptied sql_examples_collection size:", vectorstore._collection.count())
sql_example_selector = SemanticSimilarityExampleSelector(vectorstore=sql_examples_vectorstore, k=example_nums,
input_keys=["question"],
example_keys=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links", "current_date", "sql"])
sql_example_selector = SemanticSimilarityExampleSelector(
vectorstore=sql_examples_vectorstore,
k=example_nums,
input_keys=["question"],
example_keys=[
"table_name",
"fields_list",
"prior_schema_links",
"question",
"analysis",
"schema_links",
"current_date",
"sql",
],
)
for example in sql_examplars:
sql_example_selector.add_example(example)
@@ -45,20 +59,36 @@ def reload_sql_example_collection(vectorstore:Chroma,
return vectorstore, sql_example_selector
sql_examples_vectorstore = Chroma(collection_name=TEXT2DSL_COLLECTION_NAME,
embedding_function=hg_embedding,
client=chromadb_client)
sql_examples_vectorstore = Chroma(
collection_name=TEXT2DSL_COLLECTION_NAME,
embedding_function=hg_embedding,
client=chromadb_client,
)
example_nums = TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
sql_example_selector = SemanticSimilarityExampleSelector(vectorstore=sql_examples_vectorstore, k=example_nums,
input_keys=["question"],
example_keys=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links", "current_date", "sql"])
sql_example_selector = SemanticSimilarityExampleSelector(
vectorstore=sql_examples_vectorstore,
k=example_nums,
input_keys=["question"],
example_keys=[
"table_name",
"fields_list",
"prior_schema_links",
"question",
"analysis",
"schema_links",
"current_date",
"sql",
],
)
if sql_examples_vectorstore._collection.count() > 0:
print("examples already in sql_vectorstore")
print("init sql_vectorstore size:", sql_examples_vectorstore._collection.count())
print("sql_examplars size:", len(sql_examplars))
sql_examples_vectorstore, sql_example_selector = reload_sql_example_collection(sql_examples_vectorstore, sql_examplars, sql_example_selector, example_nums)
sql_examples_vectorstore, sql_example_selector = reload_sql_example_collection(
sql_examples_vectorstore, sql_examplars, sql_example_selector, example_nums
)
print("added sql_vectorstore size:", sql_examples_vectorstore._collection.count())

View File

@@ -13,17 +13,31 @@ from few_shot_example.sql_exampler import examplars as sql_examplars
from run_config import LLMPARSER_HOST, LLMPARSER_PORT
def text2dsl_setting_update(llm_parser_host:str, llm_parser_port:str,
sql_examplars:List[Mapping[str, str]], example_nums:int, is_shortcut:bool):
def text2dsl_setting_update(
llm_parser_host: str,
llm_parser_port: str,
sql_examplars: List[Mapping[str, str]],
example_nums: int,
is_shortcut: bool,
):
url = f"http://{llm_parser_host}:{llm_parser_port}/query2sql_setting_update/"
print("url: ", url)
payload = {"sqlExamplars":sql_examplars, "exampleNums":example_nums, "isShortcut":is_shortcut}
headers = {'content-type': 'application/json'}
payload = {
"sqlExamplars": sql_examplars,
"exampleNums": example_nums,
"isShortcut": is_shortcut,
}
headers = {"content-type": "application/json"}
response = requests.post(url, data=json.dumps(payload), headers=headers)
print(response.text)
if __name__ == "__main__":
text2dsl_setting_update(LLMPARSER_HOST, LLMPARSER_PORT,
sql_examplars, TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM, TEXT2DSL_IS_SHORTCUT)
text2dsl_setting_update(
LLMPARSER_HOST,
LLMPARSER_PORT,
sql_examplars,
TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM,
TEXT2DSL_IS_SHORTCUT,
)

View File

@@ -1,21 +1,25 @@
# -*- coding:utf-8 -*-
import re
def schema_link_parse(schema_link_output):
try:
schema_link_output = schema_link_output.strip()
pattern = r'Schema_links:(.*)'
schema_link_output = re.findall(pattern, schema_link_output, re.DOTALL)[0].strip()
pattern = r"Schema_links:(.*)"
schema_link_output = re.findall(pattern, schema_link_output, re.DOTALL)[
0
].strip()
except Exception as e:
print(e)
schema_link_output = None
return schema_link_output
def combo_schema_link_parse(schema_linking_sql_combo_output: str):
try:
schema_linking_sql_combo_output = schema_linking_sql_combo_output.strip()
pattern = r'Schema_links:(\[.*?\])'
pattern = r"Schema_links:(\[.*?\])"
schema_links_match = re.search(pattern, schema_linking_sql_combo_output)
if schema_links_match:
@@ -28,10 +32,11 @@ def combo_schema_link_parse(schema_linking_sql_combo_output: str):
return schema_links
def combo_sql_parse(schema_linking_sql_combo_output: str):
try:
schema_linking_sql_combo_output = schema_linking_sql_combo_output.strip()
pattern = r'SQL:(.*)'
pattern = r"SQL:(.*)"
sql_match = re.search(pattern, schema_linking_sql_combo_output)
if sql_match:

View File

@@ -11,17 +11,31 @@ from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
def schema_linking_exampler(user_query: str,
domain_name: str,
fields_list: List[str],
prior_schema_links: Mapping[str,str],
example_selector: SemanticSimilarityExampleSelector,
) -> str:
def schema_linking_exampler(
user_query: str,
domain_name: str,
fields_list: List[str],
prior_schema_links: Mapping[str, str],
example_selector: SemanticSimilarityExampleSelector,
) -> str:
prior_schema_links_str = '['+ ','.join(["""'{}'->{}""".format(k,v) for k,v in prior_schema_links.items()]) + ']'
prior_schema_links_str = (
"["
+ ",".join(["""'{}'->{}""".format(k, v) for k, v in prior_schema_links.items()])
+ "]"
)
example_prompt_template = PromptTemplate(input_variables=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links"],
template="Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\n问题:{question}\n分析:{analysis} 所以Schema_links是:\nSchema_links:{schema_links}")
example_prompt_template = PromptTemplate(
input_variables=[
"table_name",
"fields_list",
"prior_schema_links",
"question",
"analysis",
"schema_links",
],
template="Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\n问题:{question}\n分析:{analysis} 所以Schema_links是:\nSchema_links:{schema_links}",
)
instruction = "# 根据数据库的表结构,参考先验信息,找出为每个问题生成SQL查询语句的schema_links"
@@ -33,28 +47,39 @@ def schema_linking_exampler(user_query: str,
example_separator="\n\n",
prefix=instruction,
input_variables=["table_name", "fields_list", "prior_schema_links", "question"],
suffix=schema_linking_prompt
)
suffix=schema_linking_prompt,
)
schema_linking_example_prompt = schema_linking_example_prompt_template.format(table_name=domain_name,
fields_list=fields_list,
prior_schema_links=prior_schema_links_str,
question=user_query)
schema_linking_example_prompt = schema_linking_example_prompt_template.format(
table_name=domain_name,
fields_list=fields_list,
prior_schema_links=prior_schema_links_str,
question=user_query,
)
return schema_linking_example_prompt
def sql_exampler(user_query: str,
domain_name: str,
schema_link_str: str,
data_date: str,
example_selector: SemanticSimilarityExampleSelector,
) -> str:
def sql_exampler(
user_query: str,
domain_name: str,
schema_link_str: str,
data_date: str,
example_selector: SemanticSimilarityExampleSelector,
) -> str:
instruction = "# 根据schema_links为每个问题生成SQL查询语句"
sql_example_prompt_template = PromptTemplate(input_variables=["question", "current_date", "table_name", "schema_links", "sql"],
template="问题:{question}\nCurrent_date:{current_date}\nTable {table_name}\nSchema_links:{schema_links}\nSQL:{sql}")
sql_example_prompt_template = PromptTemplate(
input_variables=[
"question",
"current_date",
"table_name",
"schema_links",
"sql",
],
template="问题:{question}\nCurrent_date:{current_date}\nTable {table_name}\nSchema_links:{schema_links}\nSQL:{sql}",
)
sql_prompt = "问题:{question}\nCurrent_date:{current_date}\nTable {table_name}\nSchema_links:{schema_links}\nSQL:"
@@ -64,30 +89,51 @@ def sql_exampler(user_query: str,
example_separator="\n\n",
prefix=instruction,
input_variables=["question", "current_date", "table_name", "schema_links"],
suffix=sql_prompt
)
suffix=sql_prompt,
)
sql_example_prompt = sql_example_prompt_template.format(question=user_query,
current_date=data_date,
table_name=domain_name,
schema_links=schema_link_str)
sql_example_prompt = sql_example_prompt_template.format(
question=user_query,
current_date=data_date,
table_name=domain_name,
schema_links=schema_link_str,
)
return sql_example_prompt
def schema_linking_sql_combo_examplar(user_query: str,
domain_name: str,
data_date : str,
fields_list: List[str],
prior_schema_links: Mapping[str,str],
example_selector: SemanticSimilarityExampleSelector) -> str:
def schema_linking_sql_combo_examplar(
user_query: str,
domain_name: str,
data_date: str,
fields_list: List[str],
prior_schema_links: Mapping[str, str],
example_selector: SemanticSimilarityExampleSelector,
) -> str:
prior_schema_links_str = '['+ ','.join(["""'{}'->{}""".format(k,v) for k,v in prior_schema_links.items()]) + ']'
prior_schema_links_str = (
"["
+ ",".join(["""'{}'->{}""".format(k, v) for k, v in prior_schema_links.items()])
+ "]"
)
example_prompt_template = PromptTemplate(input_variables=["table_name", "fields_list", "prior_schema_links", "current_date", "question", "analysis", "schema_links", "sql"],
template="Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n问题:{question}\n分析:{analysis} 所以Schema_links是:\nSchema_links:{schema_links}\nSQL:{sql}")
example_prompt_template = PromptTemplate(
input_variables=[
"table_name",
"fields_list",
"prior_schema_links",
"current_date",
"question",
"analysis",
"schema_links",
"sql",
],
template="Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n问题:{question}\n分析:{analysis} 所以Schema_links是:\nSchema_links:{schema_links}\nSQL:{sql}",
)
instruction = "# 根据数据库的表结构,参考先验信息,找出为每个问题生成SQL查询语句的schema_links,再根据schema_links为每个问题生成SQL查询语句"
instruction = (
"# 根据数据库的表结构,参考先验信息,找出为每个问题生成SQL查询语句的schema_links,再根据schema_links为每个问题生成SQL查询语句"
)
schema_linking_sql_combo_prompt = "Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n问题:{question}\n分析: 让我们一步一步地思考。"
@@ -96,15 +142,23 @@ def schema_linking_sql_combo_examplar(user_query: str,
example_prompt=example_prompt_template,
example_separator="\n\n",
prefix=instruction,
input_variables=["table_name", "fields_list", "prior_schema_links", "current_date", "question"],
suffix=schema_linking_sql_combo_prompt
input_variables=[
"table_name",
"fields_list",
"prior_schema_links",
"current_date",
"question",
],
suffix=schema_linking_sql_combo_prompt,
)
schema_linking_sql_combo_example_prompt = (
schema_linking_sql_combo_example_prompt_template.format(
table_name=domain_name,
fields_list=fields_list,
prior_schema_links=prior_schema_links_str,
current_date=data_date,
question=user_query,
)
schema_linking_sql_combo_example_prompt = schema_linking_sql_combo_example_prompt_template.format(table_name=domain_name,
fields_list=fields_list,
prior_schema_links=prior_schema_links_str,
current_date=data_date,
question=user_query)
)
return schema_linking_sql_combo_example_prompt

View File

@@ -7,133 +7,182 @@ import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
from sql.prompt_maker import schema_linking_exampler, sql_exampler, schema_linking_sql_combo_examplar
from sql.constructor import sql_examples_vectorstore, sql_example_selector, reload_sql_example_collection
from sql.output_parser import schema_link_parse, combo_schema_link_parse, combo_sql_parse
from sql.prompt_maker import (
schema_linking_exampler,
sql_exampler,
schema_linking_sql_combo_examplar,
)
from sql.constructor import (
sql_examples_vectorstore,
sql_example_selector,
reload_sql_example_collection,
)
from sql.output_parser import (
schema_link_parse,
combo_schema_link_parse,
combo_sql_parse,
)
from util.llm_instance import llm
from run_config import TEXT2DSL_IS_SHORTCUT
class Text2DSLAgent(object):
def __init__(self):
self.schema_linking_exampler = schema_linking_exampler
self.sql_exampler = sql_exampler
def __init__(self):
self.schema_linking_exampler = schema_linking_exampler
self.sql_exampler = sql_exampler
self.schema_linking_sql_combo_exampler = schema_linking_sql_combo_examplar
self.schema_linking_sql_combo_exampler = schema_linking_sql_combo_examplar
self.sql_examples_vectorstore = sql_examples_vectorstore
self.sql_example_selector = sql_example_selector
self.sql_examples_vectorstore = sql_examples_vectorstore
self.sql_example_selector = sql_example_selector
self.schema_link_parse = schema_link_parse
self.combo_schema_link_parse = combo_schema_link_parse
self.combo_sql_parse = combo_sql_parse
self.schema_link_parse = schema_link_parse
self.combo_schema_link_parse = combo_schema_link_parse
self.combo_sql_parse = combo_sql_parse
self.llm = llm
self.llm = llm
self.is_shortcut = TEXT2DSL_IS_SHORTCUT
self.is_shortcut = TEXT2DSL_IS_SHORTCUT
def update_examples(self, sql_examples, example_nums, is_shortcut):
self.sql_examples_vectorstore, self.sql_example_selector = reload_sql_example_collection(self.sql_examples_vectorstore,
sql_examples,
self.sql_example_selector,
example_nums)
self.is_shortcut = is_shortcut
def update_examples(self, sql_examples, example_nums, is_shortcut):
(
self.sql_examples_vectorstore,
self.sql_example_selector,
) = reload_sql_example_collection(
self.sql_examples_vectorstore,
sql_examples,
self.sql_example_selector,
example_nums,
)
self.is_shortcut = is_shortcut
def query2sql(self, query_text: str,
schema : Union[dict, None] = None,
current_date: str = None,
linking: Union[List[Mapping[str, str]], None] = None
):
def query2sql(
self,
query_text: str,
schema: Union[dict, None] = None,
current_date: str = None,
linking: Union[List[Mapping[str, str]], None] = None,
):
print("query_text: ", query_text)
print("schema: ", schema)
print("current_date: ", current_date)
print("prior_schema_links: ", linking)
print("query_text: ", query_text)
print("schema: ", schema)
print("current_date: ", current_date)
print("prior_schema_links: ", linking)
if linking is not None:
prior_schema_links = {item['fieldValue']:item['fieldName'] for item in linking}
else:
prior_schema_links = {}
if linking is not None:
prior_schema_links = {
item["fieldValue"]: item["fieldName"] for item in linking
}
else:
prior_schema_links = {}
model_name = schema['modelName']
fields_list = schema['fieldNameList']
model_name = schema["modelName"]
fields_list = schema["fieldNameList"]
schema_linking_prompt = self.schema_linking_exampler(query_text, model_name, fields_list, prior_schema_links, self.sql_example_selector)
print("schema_linking_prompt->", schema_linking_prompt)
schema_link_output = self.llm(schema_linking_prompt)
schema_link_str = self.schema_link_parse(schema_link_output)
schema_linking_prompt = self.schema_linking_exampler(
query_text,
model_name,
fields_list,
prior_schema_links,
self.sql_example_selector,
)
print("schema_linking_prompt->", schema_linking_prompt)
schema_link_output = self.llm(schema_linking_prompt)
schema_link_str = self.schema_link_parse(schema_link_output)
sql_prompt = self.sql_exampler(query_text, model_name, schema_link_str, current_date, self.sql_example_selector)
print("sql_prompt->", sql_prompt)
sql_output = self.llm(sql_prompt)
sql_prompt = self.sql_exampler(
query_text,
model_name,
schema_link_str,
current_date,
self.sql_example_selector,
)
print("sql_prompt->", sql_prompt)
sql_output = self.llm(sql_prompt)
resp = dict()
resp['query'] = query_text
resp['model'] = model_name
resp['fields'] = fields_list
resp['priorSchemaLinking'] = linking
resp['dataDate'] = current_date
resp = dict()
resp["query"] = query_text
resp["model"] = model_name
resp["fields"] = fields_list
resp["priorSchemaLinking"] = linking
resp["dataDate"] = current_date
resp['analysisOutput'] = schema_link_output
resp['schemaLinkStr'] = schema_link_str
resp["analysisOutput"] = schema_link_output
resp["schemaLinkStr"] = schema_link_str
resp['sqlOutput'] = sql_output
resp["sqlOutput"] = sql_output
print("resp: ", resp)
print("resp: ", resp)
return resp
return resp
def query2sqlcombo(self, query_text: str,
schema : Union[dict, None] = None,
current_date: str = None,
linking: Union[List[Mapping[str, str]], None] = None
):
def query2sqlcombo(
self,
query_text: str,
schema: Union[dict, None] = None,
current_date: str = None,
linking: Union[List[Mapping[str, str]], None] = None,
):
print("query_text: ", query_text)
print("schema: ", schema)
print("current_date: ", current_date)
print("prior_schema_links: ", linking)
print("query_text: ", query_text)
print("schema: ", schema)
print("current_date: ", current_date)
print("prior_schema_links: ", linking)
if linking is not None:
prior_schema_links = {item['fieldValue']:item['fieldName'] for item in linking}
else:
prior_schema_links = {}
if linking is not None:
prior_schema_links = {
item["fieldValue"]: item["fieldName"] for item in linking
}
else:
prior_schema_links = {}
model_name = schema['modelName']
fields_list = schema['fieldNameList']
model_name = schema["modelName"]
fields_list = schema["fieldNameList"]
schema_linking_sql_combo_prompt = self.schema_linking_sql_combo_exampler(query_text, model_name, current_date, fields_list,
prior_schema_links, self.sql_example_selector)
print("schema_linking_sql_combo_prompt->", schema_linking_sql_combo_prompt)
schema_linking_sql_combo_output = self.llm(schema_linking_sql_combo_prompt)
schema_linking_sql_combo_prompt = self.schema_linking_sql_combo_exampler(
query_text,
model_name,
current_date,
fields_list,
prior_schema_links,
self.sql_example_selector,
)
print("schema_linking_sql_combo_prompt->", schema_linking_sql_combo_prompt)
schema_linking_sql_combo_output = self.llm(schema_linking_sql_combo_prompt)
schema_linking_str = self.combo_schema_link_parse(schema_linking_sql_combo_output)
sql_str = self.combo_sql_parse(schema_linking_sql_combo_output)
schema_linking_str = self.combo_schema_link_parse(
schema_linking_sql_combo_output
)
sql_str = self.combo_sql_parse(schema_linking_sql_combo_output)
resp = dict()
resp['query'] = query_text
resp['model'] = model_name
resp['fields'] = fields_list
resp['priorSchemaLinking'] = prior_schema_links
resp['dataDate'] = current_date
resp = dict()
resp["query"] = query_text
resp["model"] = model_name
resp["fields"] = fields_list
resp["priorSchemaLinking"] = prior_schema_links
resp["dataDate"] = current_date
resp['analysisOutput'] = schema_linking_sql_combo_output
resp['schemaLinkStr'] = schema_linking_str
resp['sqlOutput'] = sql_str
resp["analysisOutput"] = schema_linking_sql_combo_output
resp["schemaLinkStr"] = schema_linking_str
resp["sqlOutput"] = sql_str
print("resp: ", resp)
print("resp: ", resp)
return resp
return resp
def query2sql_run(self, query_text: str,
schema : Union[dict, None] = None,
current_date: str = None,
linking: Union[List[Mapping[str, str]], None] = None):
def query2sql_run(
self,
query_text: str,
schema: Union[dict, None] = None,
current_date: str = None,
linking: Union[List[Mapping[str, str]], None] = None,
):
if self.is_shortcut:
return self.query2sqlcombo(query_text, schema, current_date, linking)
else:
return self.query2sql(query_text, schema, current_date, linking)
if self.is_shortcut:
return self.query2sqlcombo(query_text, schema, current_date, linking)
else:
return self.query2sql(query_text, schema, current_date, linking)
text2sql_agent = Text2DSLAgent()

View File

@@ -13,11 +13,19 @@ from fastapi import FastAPI, HTTPException
from sql.run import text2sql_agent
from preset_retrieval.run import preset_query_retrieval_run, collection as preset_query_collection
from preset_retrieval.preset_query_db import (add2preset_query_collection, update_preset_query_collection,
empty_preset_query_collection, delete_preset_query_by_ids,
update_preset_query_collection, get_preset_query_by_ids,
preset_query_collection_size)
from preset_retrieval.run import (
preset_query_retrieval_run,
collection as preset_query_collection,
)
from preset_retrieval.preset_query_db import (
add2preset_query_collection,
update_preset_query_collection,
empty_preset_query_collection,
delete_preset_query_by_ids,
update_preset_query_collection,
get_preset_query_by_ids,
preset_query_collection_size,
)
from plugin_call.run import plugin_selection_run
@@ -27,62 +35,64 @@ from run_config import LLMPARSER_PORT
app = FastAPI()
@app.post("/query2sql/")
async def din_query2sql(query_body: Mapping[str, Any]):
if 'queryText' not in query_body:
raise HTTPException(status_code=400,
detail="query_text is not in query_body")
if "queryText" not in query_body:
raise HTTPException(status_code=400, detail="query_text is not in query_body")
else:
query_text = query_body['queryText']
query_text = query_body["queryText"]
if 'schema' not in query_body:
if "schema" not in query_body:
raise HTTPException(status_code=400, detail="schema is not in query_body")
else:
schema = query_body['schema']
schema = query_body["schema"]
if 'currentDate' not in query_body:
if "currentDate" not in query_body:
raise HTTPException(status_code=400, detail="currentDate is not in query_body")
else:
current_date = query_body['currentDate']
current_date = query_body["currentDate"]
if 'linking' not in query_body:
if "linking" not in query_body:
linking = None
else:
linking = query_body['linking']
linking = query_body["linking"]
resp = text2sql_agent.query2sql_run(query_text=query_text,
schema=schema, current_date=current_date, linking=linking)
resp = text2sql_agent.query2sql_run(
query_text=query_text, schema=schema, current_date=current_date, linking=linking
)
return resp
@app.post("/query2sql_setting_update/")
async def query2sql_setting_update(query_body: Mapping[str, Any]):
if 'sqlExamplars' not in query_body:
raise HTTPException(status_code=400,
detail="sqlExamplars is not in query_body")
if "sqlExamplars" not in query_body:
raise HTTPException(status_code=400, detail="sqlExamplars is not in query_body")
else:
sql_examplars = query_body['sqlExamplars']
sql_examplars = query_body["sqlExamplars"]
if 'exampleNums' not in query_body:
if "exampleNums" not in query_body:
raise HTTPException(status_code=400, detail="exampleNums is not in query_body")
else:
example_nums = query_body['exampleNums']
example_nums = query_body["exampleNums"]
if 'isShortcut' not in query_body:
if "isShortcut" not in query_body:
raise HTTPException(status_code=400, detail="isShortcut is not in query_body")
else:
is_shortcut = query_body['isShortcut']
is_shortcut = query_body["isShortcut"]
text2sql_agent.update_examples(sql_examples=sql_examplars, example_nums=example_nums, is_shortcut=is_shortcut)
text2sql_agent.update_examples(
sql_examples=sql_examplars, example_nums=example_nums, is_shortcut=is_shortcut
)
return "success"
@app.post("/preset_query_retrival/")
async def preset_query_retrival(query_text_list: List[str], n_results: int = 5):
parsed_retrieval_res_format = preset_query_retrieval_run(preset_query_collection, query_text_list, n_results)
parsed_retrieval_res_format = preset_query_retrieval_run(
preset_query_collection, query_text_list, n_results
)
return parsed_retrieval_res_format
@@ -93,27 +103,32 @@ async def preset_query_add(preset_info_list: List[Mapping[str, str]]):
preset_query_ids = []
for preset_info in preset_info_list:
preset_queries.append(preset_info['preset_query'])
preset_query_ids.append(preset_info['preset_query_id'])
preset_queries.append(preset_info["preset_query"])
preset_query_ids.append(preset_info["preset_query_id"])
add2preset_query_collection(collection=preset_query_collection,
preset_queries=preset_queries,
preset_query_ids=preset_query_ids)
add2preset_query_collection(
collection=preset_query_collection,
preset_queries=preset_queries,
preset_query_ids=preset_query_ids,
)
return "success"
@app.post("/preset_query_update/")
async def preset_query_update(preset_info_list: List[Mapping[str, str]]):
preset_queries = []
preset_query_ids = []
for preset_info in preset_info_list:
preset_queries.append(preset_info['preset_query'])
preset_query_ids.append(preset_info['preset_query_id'])
preset_queries.append(preset_info["preset_query"])
preset_query_ids.append(preset_info["preset_query_id"])
update_preset_query_collection(collection=preset_query_collection,
preset_queries=preset_queries,
preset_query_ids=preset_query_ids)
update_preset_query_collection(
collection=preset_query_collection,
preset_queries=preset_queries,
preset_query_ids=preset_query_ids,
)
return "success"
@@ -124,39 +139,50 @@ async def preset_query_empty():
return "success"
@app.post("/preset_delete_by_ids/")
async def preset_delete_by_ids(preset_query_ids: List[str]):
delete_preset_query_by_ids(collection=preset_query_collection, preset_query_ids=preset_query_ids)
delete_preset_query_by_ids(
collection=preset_query_collection, preset_query_ids=preset_query_ids
)
return "success"
@app.post("/preset_get_by_ids/")
async def preset_get_by_ids(preset_query_ids: List[str]):
preset_queries = get_preset_query_by_ids(collection=preset_query_collection, preset_query_ids=preset_query_ids)
preset_queries = get_preset_query_by_ids(
collection=preset_query_collection, preset_query_ids=preset_query_ids
)
return preset_queries
@app.get("/preset_query_size/")
async def preset_query_size():
size = preset_query_collection_size(collection=preset_query_collection)
return size
@app.post("/plugin_selection/")
async def tool_selection(query_body: Mapping[str, Any]):
if 'queryText' not in query_body:
if "queryText" not in query_body:
raise HTTPException(status_code=400, detail="query_text is not in query_body")
else:
query_text = query_body['queryText']
query_text = query_body["queryText"]
if 'pluginConfigs' not in query_body:
raise HTTPException(status_code=400, detail="pluginConfigs is not in query_body")
if "pluginConfigs" not in query_body:
raise HTTPException(
status_code=400, detail="pluginConfigs is not in query_body"
)
else:
plugin_configs = query_body['pluginConfigs']
plugin_configs = query_body["pluginConfigs"]
resp = plugin_selection_run(query_text=query_text, plugin_configs=plugin_configs)
return resp
if __name__ == "__main__":
uvicorn.run(app, host=LLMPARSER_HOST, port=LLMPARSER_PORT)

View File

@@ -7,13 +7,15 @@ from chromadb.config import Settings
from run_config import CHROMA_DB_PERSIST_PATH
client = chromadb.Client(Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=CHROMA_DB_PERSIST_PATH # Optional, defaults to .chromadb/ in the current directory
))
client = chromadb.Client(
Settings(
chroma_db_impl="duckdb+parquet",
persist_directory=CHROMA_DB_PERSIST_PATH, # Optional, defaults to .chromadb/ in the current directory
)
)
def empty_chroma_collection_2(collection:Collection):
def empty_chroma_collection_2(collection: Collection):
collection_name = collection.name
client = collection._client
metadata = collection.metadata
@@ -21,17 +23,18 @@ def empty_chroma_collection_2(collection:Collection):
client.delete_collection(collection_name)
new_collection = client.get_or_create_collection(name=collection_name,
metadata=metadata,
embedding_function=embedding_function)
new_collection = client.get_or_create_collection(
name=collection_name, metadata=metadata, embedding_function=embedding_function
)
size_of_new_collection = new_collection.count()
print(f'Collection {collection_name} emptied. Size of new collection: {size_of_new_collection}')
print(
f"Collection {collection_name} emptied. Size of new collection: {size_of_new_collection}"
)
return new_collection
def empty_chroma_collection(collection:Collection):
def empty_chroma_collection(collection: Collection):
collection.delete()

View File

@@ -4,5 +4,6 @@ from langchain.llms import OpenAI
from run_config import MODEL_NAME, OPENAI_API_KEY, TEMPERATURE
llm = OpenAI(openai_api_key=OPENAI_API_KEY, model_name=MODEL_NAME,
temperature=TEMPERATURE)
llm = OpenAI(
openai_api_key=OPENAI_API_KEY, model_name=MODEL_NAME, temperature=TEMPERATURE
)

View File

@@ -9,6 +9,7 @@ from run_config import HF_TEXT2VEC_MODEL_NAME
hg_embedding = HuggingFaceEmbeddings(model_name=HF_TEXT2VEC_MODEL_NAME)
class Text2VecEmbeddingFunction(EmbeddingFunction):
def __call__(self, texts: Documents) -> Embeddings:
@@ -16,13 +17,8 @@ class Text2VecEmbeddingFunction(EmbeddingFunction):
return embeddings
def get_embeddings(documents:List[str]) -> List[List[float]]:
def get_embeddings(documents: List[str]) -> List[List[float]]:
embeddings = hg_embedding.embed_documents(documents)
return embeddings

View File

@@ -3,7 +3,7 @@
<mapper namespace="com.tencent.supersonic.chat.persistence.mapper.ChatQueryDOMapper">
<resultMap id="BaseResultMap" type="com.tencent.supersonic.chat.persistence.dataobject.ChatQueryDO">
<id column="question_id" jdbcType="BIGINT" property="questionId" />
<result column="agent_id" jdbcType="BIGINT" property="agentId" />
<result column="agent_id" jdbcType="INTEGER" property="agentId" />
<result column="create_time" jdbcType="TIMESTAMP" property="createTime" />
<result column="user_name" jdbcType="VARCHAR" property="userName" />
<result column="query_state" jdbcType="INTEGER" property="queryState" />
@@ -77,7 +77,7 @@
query_state, chat_id, score,
feedback, query_text, query_result
)
values (#{questionId,jdbcType=BIGINT}, #{agentId,jdbcType=BIGINT}, #{createTime,jdbcType=TIMESTAMP}, #{userName,jdbcType=VARCHAR},
values (#{questionId,jdbcType=BIGINT}, #{agentId,jdbcType=INTEGER}, #{createTime,jdbcType=TIMESTAMP}, #{userName,jdbcType=VARCHAR},
#{queryState,jdbcType=INTEGER}, #{chatId,jdbcType=BIGINT}, #{score,jdbcType=INTEGER},
#{feedback,jdbcType=VARCHAR}, #{queryText,jdbcType=LONGVARCHAR}, #{queryResult,jdbcType=LONGVARCHAR}
)
@@ -98,9 +98,6 @@
<if test="chatId != null">
chat_id = #{chatId,jdbcType=BIGINT},
</if>
<if test="agentId != null">
agent_id = #{agentId,jdbcType=INTEGER},
</if>
<if test="score != null">
score = #{score,jdbcType=INTEGER},
</if>
@@ -116,5 +113,4 @@
</set>
where question_id = #{questionId,jdbcType=BIGINT}
</update>
</mapper>

View File

@@ -59,7 +59,7 @@
join (
select distinct chat_id
from s2_chat_query
where query_state = 0 and agent_id = ${agentId}
where query_state = 1 and agent_id = ${agentId}
order by chat_id desc
limit #{start}, #{limit}
) q2

View File

@@ -1,45 +0,0 @@
package com.tencent.supersonic.chat.corrector;
import static org.mockito.ArgumentMatchers.any;
import com.tencent.supersonic.chat.api.pojo.SchemaElement;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import com.tencent.supersonic.chat.api.pojo.SemanticParseInfo;
import com.tencent.supersonic.chat.parser.llm.dsl.DSLDateHelper;
import org.junit.Assert;
import org.junit.jupiter.api.Test;
import org.mockito.MockedStatic;
import org.mockito.Mockito;
class DateFieldCorrectorTest {
@Test
void corrector() {
MockedStatic<DSLDateHelper> dslDateHelper = Mockito.mockStatic(DSLDateHelper.class);
dslDateHelper.when(() -> DSLDateHelper.getReferenceDate(any())).thenReturn("2023-08-14");
DateFieldCorrector dateFieldCorrector = new DateFieldCorrector();
SemanticParseInfo parseInfo = new SemanticParseInfo();
SchemaElement model = new SchemaElement();
model.setId(2L);
parseInfo.setModel(model);
SemanticCorrectInfo semanticCorrectInfo = SemanticCorrectInfo.builder()
.sql("select count(歌曲名) from 歌曲库 ")
.parseInfo(parseInfo)
.build();
dateFieldCorrector.correct(semanticCorrectInfo);
Assert.assertEquals("SELECT count(歌曲名) FROM 歌曲库 WHERE 数据日期 = '2023-08-14'", semanticCorrectInfo.getSql());
semanticCorrectInfo = SemanticCorrectInfo.builder()
.sql("select count(歌曲名) from 歌曲库 where 数据日期 = '2023-08-14'")
.parseInfo(parseInfo)
.build();
dateFieldCorrector.correct(semanticCorrectInfo);
Assert.assertEquals("select count(歌曲名) from 歌曲库 where 数据日期 = '2023-08-14'", semanticCorrectInfo.getSql());
}
}

View File

@@ -1,65 +0,0 @@
package com.tencent.supersonic.chat.corrector;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import com.tencent.supersonic.chat.api.pojo.SemanticParseInfo;
import com.tencent.supersonic.chat.parser.llm.dsl.DSLParseResult;
import com.tencent.supersonic.chat.query.llm.dsl.LLMReq;
import com.tencent.supersonic.chat.query.llm.dsl.LLMReq.ElementValue;
import com.tencent.supersonic.common.pojo.Constants;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.junit.Assert;
import org.junit.jupiter.api.Test;
class FieldNameCorrectorTest {
@Test
void corrector() {
FieldNameCorrector corrector = new FieldNameCorrector();
SemanticCorrectInfo semanticCorrectInfo = SemanticCorrectInfo.builder()
.sql("select 歌曲名 from 歌曲库 where 专辑照片 = '七里香' and 专辑名 = '流行' and 数据日期 = '2023-08-19'")
.build();
SemanticParseInfo parseInfo = new SemanticParseInfo();
DSLParseResult dslParseResult = new DSLParseResult();
LLMReq llmReq = new LLMReq();
List<ElementValue> linking = new ArrayList<>();
ElementValue elementValue = new ElementValue();
elementValue.setFieldValue("流行");
elementValue.setFieldName("歌曲风格");
linking.add(elementValue);
ElementValue elementValue2 = new ElementValue();
elementValue2.setFieldValue("七里香");
elementValue2.setFieldName("歌曲名");
linking.add(elementValue2);
ElementValue elementValue3 = new ElementValue();
elementValue3.setFieldValue("周杰伦");
elementValue3.setFieldName("歌手名");
linking.add(elementValue3);
ElementValue elementValue4 = new ElementValue();
elementValue4.setFieldValue("流行");
elementValue4.setFieldName("歌曲流派");
linking.add(elementValue4);
llmReq.setLinking(linking);
dslParseResult.setLlmReq(llmReq);
Map<String, Object> properties = new HashMap<>();
properties.put(Constants.CONTEXT, dslParseResult);
parseInfo.setProperties(properties);
semanticCorrectInfo.setParseInfo(parseInfo);
corrector.correct(semanticCorrectInfo);
Assert.assertEquals("SELECT 歌曲名 FROM 歌曲库 WHERE 歌曲名 = '七里香' AND 歌曲流派 = '流行' AND 数据日期 = '2023-08-19'",
semanticCorrectInfo.getSql());
}
}

View File

@@ -1,71 +0,0 @@
package com.tencent.supersonic.chat.corrector;
import static org.mockito.Mockito.when;
import com.tencent.supersonic.chat.api.pojo.SchemaElement;
import com.tencent.supersonic.chat.api.pojo.SchemaValueMap;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import com.tencent.supersonic.chat.api.pojo.SemanticParseInfo;
import com.tencent.supersonic.chat.api.pojo.SemanticSchema;
import com.tencent.supersonic.common.util.ContextUtils;
import com.tencent.supersonic.knowledge.service.SchemaService;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.junit.Assert;
import org.junit.jupiter.api.Test;
import org.mockito.MockedStatic;
import org.mockito.Mockito;
class FieldValueCorrectorTest {
@Test
void corrector() {
MockedStatic<ContextUtils> mockContextUtils = Mockito.mockStatic(ContextUtils.class);
SchemaService mockSchemaService = Mockito.mock(SchemaService.class);
SemanticSchema mockSemanticSchema = Mockito.mock(SemanticSchema.class);
List<SchemaElement> dimensions = new ArrayList<>();
List<SchemaValueMap> schemaValueMaps = new ArrayList<>();
SchemaValueMap value1 = new SchemaValueMap();
value1.setBizName("杰伦");
value1.setTechName("周杰伦");
value1.setAlias(Arrays.asList("周杰倫", "Jay Chou", "周董", "周先生"));
schemaValueMaps.add(value1);
SchemaElement schemaElement = SchemaElement.builder()
.bizName("singer_name")
.name("歌手名")
.model(2L)
.schemaValueMaps(schemaValueMaps)
.build();
dimensions.add(schemaElement);
when(mockSemanticSchema.getDimensions()).thenReturn(dimensions);
when(mockSchemaService.getSemanticSchema()).thenReturn(mockSemanticSchema);
mockContextUtils.when(() -> ContextUtils.getBean(SchemaService.class)).thenReturn(mockSchemaService);
SemanticParseInfo parseInfo = new SemanticParseInfo();
SchemaElement model = new SchemaElement();
model.setId(2L);
parseInfo.setModel(model);
SemanticCorrectInfo semanticCorrectInfo = SemanticCorrectInfo.builder()
.sql("select count(song_name) from 歌曲库 where singer_name = '周先生'")
.parseInfo(parseInfo)
.build();
FieldValueCorrector corrector = new FieldValueCorrector();
corrector.correct(semanticCorrectInfo);
Assert.assertEquals("SELECT count(song_name) FROM 歌曲库 WHERE singer_name = '周杰伦'", semanticCorrectInfo.getSql());
semanticCorrectInfo.setSql("select count(song_name) from 歌曲库 where singer_name = '杰伦'");
corrector.correct(semanticCorrectInfo);
Assert.assertEquals("SELECT count(song_name) FROM 歌曲库 WHERE singer_name = '周杰伦'", semanticCorrectInfo.getSql());
}
}

View File

@@ -1,46 +0,0 @@
package com.tencent.supersonic.chat.corrector;
import com.tencent.supersonic.chat.api.pojo.SemanticCorrectInfo;
import org.junit.Assert;
import org.junit.jupiter.api.Test;
class SelectFieldAppendCorrectorTest {
@Test
void corrector() {
SelectFieldAppendCorrector corrector = new SelectFieldAppendCorrector();
SemanticCorrectInfo semanticCorrectInfo = SemanticCorrectInfo.builder()
.sql("select 歌曲名 from 歌曲库 where datediff('day', 发布日期, '2023-08-09') <= 1 and 歌手名 = '邓紫棋' "
+ "and sys_imp_date = '2023-08-09' and 歌曲发布时 = '2023-08-01' order by 播放量 desc limit 11")
.build();
corrector.correct(semanticCorrectInfo);
Assert.assertEquals(
"SELECT 歌曲名, 歌手名, 播放量, 歌曲发布时, 发布日期 FROM 歌曲库 WHERE "
+ "datediff('day', 发布日期, '2023-08-09') <= 1 AND 歌手名 = '邓紫棋' "
+ "AND sys_imp_date = '2023-08-09' AND 歌曲发布时 = '2023-08-01'"
+ " ORDER BY 播放量 DESC LIMIT 11", semanticCorrectInfo.getSql());
semanticCorrectInfo.setSql("select 用户名 from 内容库产品 where datediff('day', 数据日期, '2023-09-14') <= 30"
+ " group by 用户名 having sum(访问次数) > 2000");
corrector.correct(semanticCorrectInfo);
Assert.assertEquals(
"SELECT 用户名, sum(访问次数) FROM 内容库产品 WHERE "
+ "datediff('day', 数据日期, '2023-09-14') <= 30 "
+ "GROUP BY 用户名 HAVING sum(访问次数) > 2000", semanticCorrectInfo.getSql());
semanticCorrectInfo.setSql("SELECT 用户名, sum(访问次数) FROM 内容库产品 WHERE "
+ "datediff('day', 数据日期, '2023-09-14') <= 30 "
+ "GROUP BY 用户名 HAVING sum(访问次数) > 2000");
corrector.correct(semanticCorrectInfo);
Assert.assertEquals(
"SELECT 用户名, sum(访问次数) FROM 内容库产品 WHERE "
+ "datediff('day', 数据日期, '2023-09-14') <= 30 "
+ "GROUP BY 用户名 HAVING sum(访问次数) > 2000", semanticCorrectInfo.getSql());
}
}

View File

@@ -7,8 +7,8 @@ import com.tencent.supersonic.knowledge.service.WordService;
import lombok.extern.slf4j.Slf4j;
import org.apache.commons.collections.CollectionUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.context.event.ApplicationStartedEvent;
import org.springframework.context.ApplicationListener;
import org.springframework.boot.CommandLineRunner;
import org.springframework.core.annotation.Order;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;
@@ -17,7 +17,8 @@ import java.util.concurrent.CompletableFuture;
@Slf4j
@Component
public class ApplicationStartedListener implements ApplicationListener<ApplicationStartedEvent> {
@Order(5)
public class ApplicationStartedListener implements CommandLineRunner {
@Autowired
private KnowledgeService knowledgeService;
@@ -27,7 +28,7 @@ public class ApplicationStartedListener implements ApplicationListener<Applicati
private SchemaService schemaService;
@Override
public void onApplicationEvent(ApplicationStartedEvent event) {
public void run(String... args) {
updateKnowledgeDimValue();
}

View File

@@ -4,18 +4,13 @@ import com.google.common.cache.Cache;
import com.google.common.cache.CacheBuilder;
import com.tencent.supersonic.chat.api.component.SemanticLayer;
import com.tencent.supersonic.chat.api.pojo.ModelSchema;
import com.tencent.supersonic.common.pojo.ResultData;
import com.tencent.supersonic.semantic.api.model.response.ModelSchemaResp;
import com.tencent.supersonic.semantic.api.model.response.QueryResultWithSchemaResp;
import java.util.ArrayList;
import java.util.List;
import java.util.Optional;
import java.util.concurrent.TimeUnit;
import lombok.SneakyThrows;
import lombok.extern.slf4j.Slf4j;
import org.springframework.core.ParameterizedTypeReference;
import org.springframework.util.CollectionUtils;
@Slf4j
@@ -24,10 +19,6 @@ public abstract class BaseSemanticLayer implements SemanticLayer {
protected final Cache<String, List<ModelSchemaResp>> modelSchemaCache =
CacheBuilder.newBuilder().expireAfterWrite(10, TimeUnit.SECONDS).build();
protected ParameterizedTypeReference<ResultData<QueryResultWithSchemaResp>> structTypeRef =
new ParameterizedTypeReference<ResultData<QueryResultWithSchemaResp>>() {
};
@SneakyThrows
public List<ModelSchemaResp> fetchModelSchema(List<Long> ids, Boolean cacheEnable) {
if (cacheEnable) {

View File

@@ -57,17 +57,13 @@ public class LocalSemanticLayer extends BaseSemanticLayer {
}
@Override
@SneakyThrows
public QueryResultWithSchemaResp queryByDsl(QueryDslReq queryDslReq, User user) {
try {
queryService = ContextUtils.getBean(QueryService.class);
Object object = queryService.queryBySql(queryDslReq, user);
QueryResultWithSchemaResp queryResultWithSchemaResp = JsonUtil.toObject(JsonUtil.toString(object),
queryService = ContextUtils.getBean(QueryService.class);
Object object = queryService.queryBySql(queryDslReq, user);
QueryResultWithSchemaResp queryResultWithSchemaResp = JsonUtil.toObject(JsonUtil.toString(object),
QueryResultWithSchemaResp.class);
return queryResultWithSchemaResp;
} catch (Exception e) {
log.info("queryByDsl has an exception:{}", e);
}
return null;
return queryResultWithSchemaResp;
}
@Override

View File

@@ -10,7 +10,7 @@ public enum AggOperatorEnum {
SUM("SUM"),
DISTINCT("DISTINCT"),
COUNT_DISTINCT("COUNT_DISTINCT"),
TOPN("TOPN"),

32
dev/reformat Executable file
View File

@@ -0,0 +1,32 @@
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
set -x
PROFILES="-P "
# python style checks rely on `black` in path
if ! command -v black &> /dev/null
then
echo "Skip Python lint since 'black' is not available. Please install 'black' by running 'pip install black==22.3.0'"
else
PROFILES="${PROFILES} spotless-python"
fi
mvn spotless:apply $PROFILES

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 220 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 108 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 260 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 102 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 173 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 133 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 358 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 114 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 297 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 275 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 295 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 111 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 107 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 69 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 182 KiB

After

Width:  |  Height:  |  Size: 155 KiB

View File

@@ -1,26 +0,0 @@
# LLM模型配置
### **简介**
语言模型的使用是超音数的重要一环。能显著增强对用户的问题的理解能力,是通过对话形式与用户交互的基石之一。在本项目中对语言模型能力的应用主要在 LLM 和 Embedding 两方面;默认使用的模型中LLM选用闭源模型 gpt-3.5-turbo-16kEmbedding模型选用开源模型 GanymedeNil/text2vec-large-chinese。用户可以根据自己实际需求进行配置更改。
### **配置方式**
<div align="left" >
<img src=../images/nlp_config.png width="70%"/>
<p>图1-1 LLM配置文件</p>
</div>
1. LLM模型相关的配置在 supersonic/chat/core/src/main/python/llm/run_config.py 进行配置。
2. LLM采用OpenAI的闭源模型 gpt-3.5-turbo-16k在使用时需要提供OpenAI的API-Key才能调用LLM模型通过 OPENAI_API_KEY 变量进行配置。
3. Embedding模型采用开源模型 GanymedeNil/text2vec-large-chinese通过 HF_TEXT2VEC_MODEL_NAME 变量进行位置为了使用方便采用托管在HuggingFace的源初次启动时自动下载模型文件。
### **FAQ**
1. 可以用开源的LLM模型替代OpenAI的GPT模型吗
- 暂时不能。我们测试过大部分主流的开源LLM在实际使用中在本项目需要LLM提供的逻辑推理和代码生成场景上开源模型还不能满足需求。
- 我们会持续跟进开源LLM的最新进展在有满足要求的开源LLM后在项目中集成私有化部署开源LLM的能力。
2. GPT4、GPT3.5、GPT3.5-16k 这几个模型用哪个比较好?
- GPT3.5、GPT3.5-16k 均能基本满足要求但会有输出结果不稳定的情况GPT3.5的token长度限制为4k在现有CoT策略下容易出现超过长度限制的情况。
- GPT4的输出更稳定但费用成本远超GPT3.5,可以根据实际使用场景进行选择。
3. Embedding模型用其他的可以吗
- 可以。可以以该项目[text2vec]([URL](https://github.com/shibing624/text2vec))的榜单作为参考然后在HuggingFace找到对应模型的model card修改HF_TEXT2VEC_MODEL_NAME变量的取值。

View File

@@ -1,29 +0,0 @@
# text2sql功能相关配置
### **简介**
text2sql的功能实现高度依赖对LLM的应用。通过LLM生成SQL的过程中利用小样本(few-shots-examples)通过思维链(chain-of-thoughts)的方式对LLM in-context-learning的能力进行引导对于生成较为稳定且符合下游语法解析规则的SQL非常重要。用户可以根据自身需要对样本池及样本的数量进行配置使其更加符合自身业务特点。
### **配置方式**
1. 样本池的配置。
- supersonic/chat/core/src/main/python/few_shot_example/sql_exampler.py 为样本池配置文件。用户可以以已有的样本作为参考配置更贴近自身业务需求的样本用于更好的引导LLM生成SQL。
2. 样本数量的配置。
- 在 supersonic/chat/core/src/main/python/run_config.py 中通过 TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM 变量进行配置。
- 默认值为15为项目在内部实践后较优的经验值。样本少太少对导致LLM在生成SQL的过程中缺少引导和示范生成的SQL会更不稳定样本太多会增加生成SQL需要的时间和LLM的token消耗或超过LLM的token上限
3. SQL生成方式的配置
- 在 supersonic/chat/core/src/main/python/run_config.py 中通过 TEXT2DSL_IS_SHORTCUT 变量进行配置。
- 默认值为False当为False时会调用2次LLM生成SQL当为True时会只调用1次LLM生成SQL。相较于2次LLM调用生成的SQL耗时会减少30-40%token的消耗量会减少30%左右但生成的SQL正确率会有所下降。
<div align="left" >
<img src=../images/text2sql_config.png width="70%"/>
<p>图1-1 配置文件</p>
</div>
### **运行中更新配置的脚本**
1. 如果在启动项目后用户需要对text2sql功能的相关配置进行调试可以在修改相关配置文件后通过以下2种方式让配置在项目运行中让配置生效。
- 执行 supersonic-daemon.sh reload llmparser
- 执行 python examples_reload_run.py
### **FAQ**
1. 生成一个SQL需要消耗的的LLM token数量太多了按照openAI对token的收费标准生成一个SQL太贵了可以少用一些token吗
- 可以。 用户可以根据自身需求如配置方式1.中所示修改样本池中的样本选用一些更加简短的样本。如配置方式2.中所示减少使用的样本数量。配置方式3.中所示只调用1次LLM生成SQL。
- 需要注意样本和样本数量的选择对生成SQL的质量有很大的影响。过于激进的降低输入的token数量可能会降低生成SQL的质量。需要用户根据自身业务特点实测后进行平衡。

View File

@@ -31,12 +31,9 @@ com.tencent.supersonic.auth.api.authentication.adaptor.UserAdaptor=\
com.tencent.supersonic.chat.api.component.SemanticCorrector=\
com.tencent.supersonic.chat.corrector.DateFieldCorrector, \
com.tencent.supersonic.chat.corrector.FunctionAliasCorrector, \
com.tencent.supersonic.chat.corrector.FieldNameCorrector, \
com.tencent.supersonic.chat.corrector.FieldCorrector, \
com.tencent.supersonic.chat.corrector.FunctionCorrector, \
com.tencent.supersonic.chat.corrector.TableNameCorrector, \
com.tencent.supersonic.chat.corrector.QueryFilterAppend, \
com.tencent.supersonic.chat.corrector.SelectFieldAppendCorrector, \
com.tencent.supersonic.chat.corrector.FieldValueCorrector
com.tencent.supersonic.chat.corrector.GlobalCorrector, \
com.tencent.supersonic.chat.corrector.TableCorrector, \
com.tencent.supersonic.chat.corrector.GroupByCorrector, \
com.tencent.supersonic.chat.corrector.SelectCorrector, \
com.tencent.supersonic.chat.corrector.WhereCorrector, \
com.tencent.supersonic.chat.corrector.HavingCorrector

View File

@@ -0,0 +1,199 @@
package com.tencent.supersonic;
import com.tencent.supersonic.auth.api.authentication.pojo.User;
import com.tencent.supersonic.common.pojo.enums.AggOperatorEnum;
import com.tencent.supersonic.semantic.api.model.enums.DimensionTypeEnum;
import com.tencent.supersonic.semantic.api.model.enums.IdentifyTypeEnum;
import com.tencent.supersonic.semantic.api.model.pojo.Dim;
import com.tencent.supersonic.semantic.api.model.pojo.DimensionTimeTypeParams;
import com.tencent.supersonic.semantic.api.model.pojo.Identify;
import com.tencent.supersonic.semantic.api.model.pojo.Measure;
import com.tencent.supersonic.semantic.api.model.request.DatasourceReq;
import com.tencent.supersonic.semantic.api.model.request.DomainReq;
import com.tencent.supersonic.semantic.api.model.request.ModelReq;
import com.tencent.supersonic.semantic.model.domain.DatasourceService;
import com.tencent.supersonic.semantic.model.domain.DomainService;
import com.tencent.supersonic.semantic.model.domain.ModelService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.CommandLineRunner;
import org.springframework.core.annotation.Order;
import org.springframework.stereotype.Component;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
@Component
@Slf4j
@Order(2)
public class LoadBenchMarkDemo implements CommandLineRunner {
private User user = User.getFakeUser();
@Value("${spring.h2.demo.enabled:false}")
private boolean demoEnable;
@Autowired
private DomainService domainService;
@Autowired
private ModelService modelService;
@Autowired
private DatasourceService datasourceService;
@Override
public void run(String... args) {
if (!demoEnable) {
return;
}
try {
addDomain();
addModel_1();
addDatasource_1();
addDatasource_2();
addDatasource_3();
addDatasource_4();
} catch (Exception e) {
log.error("Failed to add bench mark demo data", e);
}
}
public void addDomain() {
DomainReq domainReq = new DomainReq();
domainReq.setName("测评数据-音乐");
domainReq.setBizName("music");
domainReq.setParentId(0L);
domainReq.setViewers(Arrays.asList("admin", "tom", "jack"));
domainReq.setViewOrgs(Collections.singletonList("admin"));
domainReq.setAdmins(Collections.singletonList("admin"));
domainReq.setAdminOrgs(Collections.emptyList());
domainService.createDomain(domainReq, user);
}
public void addModel_1() {
ModelReq modelReq = new ModelReq();
modelReq.setName("测评数据-音乐");
modelReq.setBizName("music");
modelReq.setDomainId(2L);
modelReq.setViewers(Arrays.asList("admin", "tom", "jack"));
modelReq.setViewOrgs(Collections.singletonList("admin"));
modelReq.setAdmins(Collections.singletonList("admin"));
modelReq.setAdminOrgs(Collections.emptyList());
modelService.createModel(modelReq, user);
}
public void addDatasource_1() throws Exception {
DatasourceReq datasourceReq = new DatasourceReq();
datasourceReq.setModelId(3L);
datasourceReq.setName("艺术类型");
datasourceReq.setBizName("genre");
datasourceReq.setDescription("艺术类型");
datasourceReq.setDatabaseId(1L);
List<Dim> dimensions = new ArrayList<>();
Dim dimension1 = new Dim("", "imp_date", DimensionTypeEnum.time.name(), 0);
dimension1.setTypeParams(new DimensionTimeTypeParams());
dimensions.add(dimension1);
dimensions.add(new Dim("活跃区域", "most_popular_in", DimensionTypeEnum.categorical.name(), 1));
datasourceReq.setDimensions(dimensions);
List<Identify> identifiers = new ArrayList<>();
identifiers.add(new Identify("音乐类型名称", IdentifyTypeEnum.primary.name(), "g_name"));
datasourceReq.setIdentifiers(identifiers);
List<Measure> measures = new ArrayList<>();
Measure measure = new Measure("评分", "rating", AggOperatorEnum.SUM.name(), 0);
measures.add(measure);
datasourceReq.setMeasures(measures);
datasourceReq.setQueryType("sql_query");
datasourceReq.setSqlQuery("SELECT g_name, rating, most_popular_in FROM genre");
datasourceService.createDatasource(datasourceReq, user);
}
public void addDatasource_2() throws Exception {
DatasourceReq datasourceReq = new DatasourceReq();
datasourceReq.setModelId(3L);
datasourceReq.setName("艺术家");
datasourceReq.setBizName("artist");
datasourceReq.setDescription("艺术家");
datasourceReq.setDatabaseId(1L);
List<Dim> dimensions = new ArrayList<>();
dimensions.add(new Dim("国籍", "country", DimensionTypeEnum.categorical.name(), 1));
dimensions.add(new Dim("性别", "gender", DimensionTypeEnum.categorical.name(), 1));
datasourceReq.setDimensions(dimensions);
List<Identify> identifiers = new ArrayList<>();
identifiers.add(new Identify("艺术家名称", IdentifyTypeEnum.primary.name(), "artist_name"));
identifiers.add(new Identify("音乐类型名称", IdentifyTypeEnum.foreign.name(), "g_name"));
datasourceReq.setIdentifiers(identifiers);
datasourceReq.setMeasures(Collections.emptyList());
datasourceReq.setQueryType("sql_query");
datasourceReq.setSqlQuery("SELECT artist_name, country, gender, g_name FROM artist");
datasourceService.createDatasource(datasourceReq, user);
}
public void addDatasource_3() throws Exception {
DatasourceReq datasourceReq = new DatasourceReq();
datasourceReq.setModelId(3L);
datasourceReq.setName("文件");
datasourceReq.setBizName("files");
datasourceReq.setDescription("文件");
datasourceReq.setDatabaseId(1L);
List<Dim> dimensions = new ArrayList<>();
dimensions.add(new Dim("持续时间", "duration", DimensionTypeEnum.categorical.name(), 1));
dimensions.add(new Dim("文件格式", "formats", DimensionTypeEnum.categorical.name(), 1));
datasourceReq.setDimensions(dimensions);
List<Identify> identifiers = new ArrayList<>();
identifiers.add(new Identify("歌曲ID", IdentifyTypeEnum.primary.name(), "f_id"));
identifiers.add(new Identify("艺术家名称", IdentifyTypeEnum.foreign.name(), "artist_name"));
datasourceReq.setIdentifiers(identifiers);
datasourceReq.setMeasures(Collections.emptyList());
datasourceReq.setQueryType("sql_query");
datasourceReq.setSqlQuery("SELECT f_id, artist_name, file_size, duration, formats FROM files");
datasourceService.createDatasource(datasourceReq, user);
}
public void addDatasource_4() throws Exception {
DatasourceReq datasourceReq = new DatasourceReq();
datasourceReq.setModelId(3L);
datasourceReq.setName("歌曲");
datasourceReq.setBizName("song");
datasourceReq.setDescription("歌曲");
datasourceReq.setDatabaseId(1L);
List<Dim> dimensions = new ArrayList<>();
Dim dimension1 = new Dim("", "imp_date", DimensionTypeEnum.time.name(), 0);
dimension1.setTypeParams(new DimensionTimeTypeParams());
dimensions.add(dimension1);
dimensions.add(new Dim("国家", "country", DimensionTypeEnum.categorical.name(), 1));
dimensions.add(new Dim("语种", "languages", DimensionTypeEnum.categorical.name(), 1));
dimensions.add(new Dim("发行时间", "releasedate", DimensionTypeEnum.categorical.name(), 1));
datasourceReq.setDimensions(dimensions);
List<Identify> identifiers = new ArrayList<>();
identifiers.add(new Identify("歌曲名称", IdentifyTypeEnum.primary.name(), "song_name"));
identifiers.add(new Identify("歌曲ID", IdentifyTypeEnum.foreign.name(), "f_id"));
datasourceReq.setIdentifiers(identifiers);
List<Measure> measures = new ArrayList<>();
measures.add(new Measure("分辨率", "resolution", AggOperatorEnum.SUM.name(), 1));
measures.add(new Measure("评分", "rating", AggOperatorEnum.SUM.name(), 1));
datasourceReq.setMeasures(measures);
datasourceReq.setQueryType("sql_query");
datasourceReq.setSqlQuery("SELECT imp_date, song_name, artist_name, country, f_id, g_name, "
+ " rating, languages, releasedate, resolution FROM song");
datasourceService.createDatasource(datasourceReq, user);
}
}

View File

@@ -0,0 +1,334 @@
package com.tencent.supersonic;
import com.google.common.collect.Lists;
import com.tencent.supersonic.auth.api.authentication.pojo.User;
import com.tencent.supersonic.auth.api.authorization.pojo.AuthGroup;
import com.tencent.supersonic.auth.api.authorization.pojo.AuthRule;
import com.tencent.supersonic.auth.api.authorization.service.AuthService;
import com.tencent.supersonic.common.pojo.enums.AggOperatorEnum;
import com.tencent.supersonic.common.pojo.enums.AggregateTypeEnum;
import com.tencent.supersonic.common.pojo.enums.SensitiveLevelEnum;
import com.tencent.supersonic.semantic.api.model.enums.DimensionTypeEnum;
import com.tencent.supersonic.semantic.api.model.enums.IdentifyTypeEnum;
import com.tencent.supersonic.semantic.api.model.enums.SemanticTypeEnum;
import com.tencent.supersonic.semantic.api.model.pojo.Dim;
import com.tencent.supersonic.semantic.api.model.pojo.DimensionTimeTypeParams;
import com.tencent.supersonic.semantic.api.model.pojo.Entity;
import com.tencent.supersonic.semantic.api.model.pojo.Identify;
import com.tencent.supersonic.semantic.api.model.pojo.Measure;
import com.tencent.supersonic.semantic.api.model.pojo.MetricTypeParams;
import com.tencent.supersonic.semantic.api.model.request.DatabaseReq;
import com.tencent.supersonic.semantic.api.model.request.DatasourceReq;
import com.tencent.supersonic.semantic.api.model.request.DimensionReq;
import com.tencent.supersonic.semantic.api.model.request.DomainReq;
import com.tencent.supersonic.semantic.api.model.request.MetricReq;
import com.tencent.supersonic.semantic.api.model.request.ModelReq;
import com.tencent.supersonic.semantic.model.domain.DatabaseService;
import com.tencent.supersonic.semantic.model.domain.DatasourceService;
import com.tencent.supersonic.semantic.model.domain.DimensionService;
import com.tencent.supersonic.semantic.model.domain.DomainService;
import com.tencent.supersonic.semantic.model.domain.MetricService;
import com.tencent.supersonic.semantic.model.domain.ModelService;
import lombok.extern.slf4j.Slf4j;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.boot.CommandLineRunner;
import org.springframework.core.annotation.Order;
import org.springframework.stereotype.Component;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
@Component
@Slf4j
@Order(1)
public class LoadModelDataDemo implements CommandLineRunner {
private User user = User.getFakeUser();
@Value("${spring.h2.demo.enabled:false}")
private boolean demoEnable;
@Autowired
private DatabaseService databaseService;
@Autowired
private DomainService domainService;
@Autowired
private ModelService modelService;
@Autowired
private DatasourceService datasourceService;
@Autowired
private DimensionService dimensionService;
@Autowired
private MetricService metricService;
@Autowired
private AuthService authService;
@Override
public void run(String... args) {
if (!demoEnable) {
return;
}
try {
addDatabase();
addDomain();
addModel_1();
addDatasource_1();
addDatasource_2();
addDatasource_3();
addModel_2();
addDatasource_4();
updateDimension();
updateMetric();
addAuthGroup_1();
addAuthGroup_2();
} catch (Exception e) {
log.error("Failed to add model demo data", e);
}
}
public void addDatabase() {
DatabaseReq databaseReq = new DatabaseReq();
databaseReq.setName("H2数据实例");
databaseReq.setDescription("样例数据库实例");
databaseReq.setType("h2");
databaseReq.setUrl("jdbc:h2:mem:semantic;DATABASE_TO_UPPER=false");
databaseReq.setUsername("root");
databaseReq.setPassword("semantic");
databaseService.createOrUpdateDatabase(databaseReq, user);
}
public void addDomain() {
DomainReq domainReq = new DomainReq();
domainReq.setName("超音数");
domainReq.setBizName("supersonic");
domainReq.setParentId(0L);
domainReq.setViewers(Arrays.asList("admin", "tom", "jack"));
domainReq.setViewOrgs(Collections.singletonList("admin"));
domainReq.setAdmins(Collections.singletonList("admin"));
domainReq.setAdminOrgs(Collections.emptyList());
domainService.createDomain(domainReq, user);
}
public void addModel_1() {
ModelReq modelReq = new ModelReq();
modelReq.setName("超音数");
modelReq.setBizName("supersonic");
modelReq.setDomainId(1L);
modelReq.setViewers(Arrays.asList("admin", "tom", "jack"));
modelReq.setViewOrgs(Collections.singletonList("admin"));
modelReq.setAdmins(Collections.singletonList("admin"));
modelReq.setAdminOrgs(Collections.emptyList());
modelService.createModel(modelReq, user);
}
public void addDatasource_1() throws Exception {
DatasourceReq datasourceReq = new DatasourceReq();
datasourceReq.setName("用户部门");
datasourceReq.setBizName("user_department");
datasourceReq.setDescription("用户部门");
datasourceReq.setDatabaseId(1L);
List<Identify> identifiers = new ArrayList<>();
identifiers.add(new Identify("用户名", IdentifyTypeEnum.primary.name(), "user_name"));
datasourceReq.setIdentifiers(identifiers);
List<Dim> dimensions = new ArrayList<>();
dimensions.add(new Dim("部门", "department",
DimensionTypeEnum.categorical.name(), 1));
datasourceReq.setDimensions(dimensions);
datasourceReq.setMeasures(Collections.emptyList());
datasourceReq.setQueryType("table_query");
datasourceReq.setTableQuery("PUBLIC.s2_user_department");
datasourceReq.setModelId(1L);
datasourceService.createDatasource(datasourceReq, user);
}
public void addDatasource_2() throws Exception {
DatasourceReq datasourceReq = new DatasourceReq();
datasourceReq.setName("PVUV统计");
datasourceReq.setBizName("s2_pv_uv_statis");
datasourceReq.setDescription("PVUV统计");
datasourceReq.setDatabaseId(1L);
List<Identify> identifiers = new ArrayList<>();
identifiers.add(new Identify("用户名", IdentifyTypeEnum.primary.name(), "user_name"));
datasourceReq.setIdentifiers(identifiers);
List<Dim> dimensions = new ArrayList<>();
Dim dimension1 = new Dim("", "imp_date", DimensionTypeEnum.time.name(), 0);
dimension1.setTypeParams(new DimensionTimeTypeParams());
dimensions.add(dimension1);
Dim dimension2 = new Dim("", "page", DimensionTypeEnum.categorical.name(), 0);
dimensions.add(dimension2);
datasourceReq.setDimensions(dimensions);
List<Measure> measures = new ArrayList<>();
Measure measure1 = new Measure("访问次数", "pv", AggOperatorEnum.SUM.name(), 1);
measures.add(measure1);
Measure measure2 = new Measure("访问人数", "uv", AggOperatorEnum.COUNT_DISTINCT.name(), 1);
measures.add(measure2);
datasourceReq.setMeasures(measures);
datasourceReq.setSqlQuery("SELECT imp_date, user_name, page, 1 as pv, user_name as uv FROM s2_pv_uv_statis");
datasourceReq.setQueryType("sql_query");
datasourceReq.setModelId(1L);
datasourceService.createDatasource(datasourceReq, user);
}
public void addDatasource_3() throws Exception {
DatasourceReq datasourceReq = new DatasourceReq();
datasourceReq.setName("停留时长统计");
datasourceReq.setBizName("s2_stay_time_statis");
datasourceReq.setDescription("停留时长统计");
datasourceReq.setDatabaseId(1L);
List<Identify> identifiers = new ArrayList<>();
identifiers.add(new Identify("用户名", IdentifyTypeEnum.primary.name(), "user_name"));
datasourceReq.setIdentifiers(identifiers);
List<Dim> dimensions = new ArrayList<>();
Dim dimension1 = new Dim("", "imp_date", DimensionTypeEnum.time.name(), 0);
dimension1.setTypeParams(new DimensionTimeTypeParams());
dimensions.add(dimension1);
Dim dimension2 = new Dim("页面", "page", DimensionTypeEnum.categorical.name(), 1);
dimensions.add(dimension2);
datasourceReq.setDimensions(dimensions);
List<Measure> measures = new ArrayList<>();
Measure measure1 = new Measure("停留时长", "stay_hours", AggregateTypeEnum.SUM.name(), 1);
measures.add(measure1);
datasourceReq.setMeasures(measures);
datasourceReq.setTableQuery("PUBLIC.s2_stay_time_statis");
datasourceReq.setQueryType("table_query");
datasourceReq.setModelId(1L);
datasourceService.createDatasource(datasourceReq, user);
}
public void addModel_2() {
ModelReq modelReq = new ModelReq();
modelReq.setName("艺人库");
modelReq.setBizName("singer");
modelReq.setDomainId(1L);
modelReq.setViewers(Arrays.asList("admin", "tom", "jack"));
modelReq.setViewOrgs(Collections.singletonList("admin"));
modelReq.setAdmins(Collections.singletonList("admin"));
modelReq.setAdminOrgs(Collections.emptyList());
modelReq.setEntity(new Entity(7L, Arrays.asList("歌手", "艺人")));
modelService.createModel(modelReq, user);
}
public void addDatasource_4() throws Exception {
DatasourceReq datasourceReq = new DatasourceReq();
datasourceReq.setName("艺人库");
datasourceReq.setBizName("singer");
datasourceReq.setDescription("艺人库");
datasourceReq.setDatabaseId(1L);
List<Identify> identifiers = new ArrayList<>();
identifiers.add(new Identify("歌手名", IdentifyTypeEnum.primary.name(), "singer_name"));
datasourceReq.setIdentifiers(identifiers);
List<Dim> dimensions = new ArrayList<>();
Dim dimension1 = new Dim("", "imp_date", DimensionTypeEnum.time.name(), 0);
dimension1.setTypeParams(new DimensionTimeTypeParams());
dimensions.add(dimension1);
dimensions.add(new Dim("活跃区域", "act_area",
DimensionTypeEnum.categorical.name(), 1));
dimensions.add(new Dim("代表作", "song_name",
DimensionTypeEnum.categorical.name(), 1));
dimensions.add(new Dim("风格", "genre",
DimensionTypeEnum.categorical.name(), 1));
datasourceReq.setDimensions(dimensions);
Measure measure1 = new Measure("播放量", "js_play_cnt", "sum", 1);
Measure measure2 = new Measure("下载量", "down_cnt", "sum", 1);
Measure measure3 = new Measure("收藏量", "favor_cnt", "sum", 1);
datasourceReq.setMeasures(Lists.newArrayList(measure1, measure2, measure3));
datasourceReq.setQueryType("table_query");
datasourceReq.setTableQuery("PUBLIC.singer");
datasourceReq.setModelId(2L);
datasourceService.createDatasource(datasourceReq, user);
}
public void updateDimension() throws Exception {
DimensionReq dimensionReq = new DimensionReq();
dimensionReq.setModelId(1L);
dimensionReq.setType(DimensionTypeEnum.categorical.name());
dimensionReq.setId(3L);
dimensionReq.setName("页面");
dimensionReq.setBizName("page");
dimensionReq.setDatasourceId(3L);
dimensionReq.setAlias("page");
dimensionReq.setSemanticType(SemanticTypeEnum.CATEGORY.name());
dimensionReq.setSensitiveLevel(2);
dimensionReq.setDescription("页面");
dimensionReq.setExpr("page");
dimensionReq.setDimValueMaps(Collections.emptyList());
dimensionService.updateDimension(dimensionReq, user);
}
public void updateMetric() throws Exception {
MetricReq metricReq = new MetricReq();
metricReq.setModelId(1L);
metricReq.setId(3L);
metricReq.setName("停留时长");
metricReq.setBizName("stay_hours");
metricReq.setSensitiveLevel(SensitiveLevelEnum.HIGH.getCode());
metricReq.setDescription("停留时长");
metricReq.setTags(Collections.singletonList("核心指标"));
metricReq.setAlias("访问时长");
MetricTypeParams metricTypeParams = new MetricTypeParams();
metricTypeParams.setExpr("s2_stay_time_statis_stay_hours");
List<Measure> measures = new ArrayList<>();
Measure measure = new Measure("停留时长",
"s2_stay_time_statis_stay_hours", AggOperatorEnum.SUM.getOperator(), 1);
measure.setDatasourceId(3L);
measures.add(measure);
metricTypeParams.setMeasures(measures);
metricReq.setTypeParams(metricTypeParams);
metricService.updateExprMetric(metricReq, user);
}
public void addAuthGroup_1() {
AuthGroup authGroupReq = new AuthGroup();
authGroupReq.setModelId("1");
authGroupReq.setName("admin-permission");
List<AuthRule> authRules = new ArrayList<>();
AuthRule authRule = new AuthRule();
authRule.setMetrics(Collections.singletonList("stay_hours"));
authRule.setDimensions(Collections.singletonList("page"));
authRules.add(authRule);
authGroupReq.setAuthRules(authRules);
authGroupReq.setAuthorizedUsers(Collections.singletonList("jack"));
authGroupReq.setAuthorizedDepartmentIds(Collections.emptyList());
authService.addOrUpdateAuthGroup(authGroupReq);
}
public void addAuthGroup_2() {
AuthGroup authGroupReq = new AuthGroup();
authGroupReq.setModelId("1");
authGroupReq.setName("tom_sales_permission");
List<AuthRule> authRules = new ArrayList<>();
AuthRule authRule = new AuthRule();
authRule.setMetrics(Collections.singletonList("stay_hours"));
authRule.setDimensions(Collections.singletonList("page"));
authRules.add(authRule);
authGroupReq.setAuthRules(authRules);
authGroupReq.setDimensionFilters(Collections.singletonList("department in ('sales')"));
authGroupReq.setDimensionFilterDescription("部门 in [sales]");
authGroupReq.setAuthorizedUsers(Collections.singletonList("tom"));
authGroupReq.setAuthorizedDepartmentIds(Collections.emptyList());
authService.addOrUpdateAuthGroup(authGroupReq);
}
}

View File

@@ -31,12 +31,9 @@ com.tencent.supersonic.auth.api.authentication.adaptor.UserAdaptor=\
com.tencent.supersonic.auth.authentication.adaptor.DefaultUserAdaptor
com.tencent.supersonic.chat.api.component.SemanticCorrector=\
com.tencent.supersonic.chat.corrector.DateFieldCorrector, \
com.tencent.supersonic.chat.corrector.FunctionAliasCorrector, \
com.tencent.supersonic.chat.corrector.FieldNameCorrector, \
com.tencent.supersonic.chat.corrector.FieldCorrector, \
com.tencent.supersonic.chat.corrector.FunctionCorrector, \
com.tencent.supersonic.chat.corrector.TableNameCorrector, \
com.tencent.supersonic.chat.corrector.QueryFilterAppend, \
com.tencent.supersonic.chat.corrector.SelectFieldAppendCorrector, \
com.tencent.supersonic.chat.corrector.FieldValueCorrector
com.tencent.supersonic.chat.corrector.GlobalCorrector, \
com.tencent.supersonic.chat.corrector.TableCorrector, \
com.tencent.supersonic.chat.corrector.GroupByCorrector, \
com.tencent.supersonic.chat.corrector.SelectCorrector, \
com.tencent.supersonic.chat.corrector.WhereCorrector, \
com.tencent.supersonic.chat.corrector.HavingCorrector

View File

@@ -0,0 +1,31 @@
孟加拉国 _3_8 9000
锡尔赫特、吉大港、库斯蒂亚 _3_8 9000
加拿大 _3_8 9000
美国 _3_8 9000
tagore _3_9 9000
nazrul _3_9 9000
民间 _3_9 9000
现代 _3_9 9000
蓝调 _3_9 9000
流行 _3_9 9000
孟加拉国 _3_10 9000
印度 _3_10 9000
美国 _3_10 9000
英国 _3_10 9000
男性 _3_11 9000
女性 _3_11 9000
Shrikanta _3_12 9000
Prity _3_12 9000
Farida _3_12 9000
Topu _3_12 9000
Enrique _3_12 9000
Michel _3_12 9000
mp4 _3_14 9000
mp3 _3_14 9000
孟加拉语 _3_16 9000
英文 _3_16 9000
Tumi#长袍#尼罗布 _3_18 9000
舒克诺#帕塔尔#努普尔#帕埃 _3_18 9000
阿米·奥帕尔·霍伊 _3_18 9000
我的爱 _3_18 9000
打败它 _3_18 9000

View File

@@ -5,32 +5,6 @@ insert into s2_user (id, `name`, password, display_name, email) values (3, 'tom'
insert into s2_user (id, `name`, password, display_name, email, is_admin) values (4, 'lucy','123456','lucy','lucy@xx.com', 1);
insert into s2_user (id, `name`, password, display_name, email) values (5, 'alice','123456','alice','alice@xx.com');
-- sample models
insert into s2_domain (id, `name`, biz_name, parent_id, status, created_at, created_by, updated_at, updated_by, `admin`, admin_org, viewer, view_org) VALUES(1, '超音数', 'supersonic', 0, 1, '2023-05-24 00:00:00', 'admin', '2023-05-24 00:00:00', 'admin', 'admin', '', 'admin,tom,jack', 'admin' );
insert into s2_model (id, `name`, biz_name, domain_id, created_at, created_by, updated_at, updated_by, `admin`, admin_org, is_open, viewer, view_org, entity) VALUES(1, '超音数', 'supersonic', 1, '2023-05-24 00:00:00', 'admin', '2023-05-24 00:00:00', 'admin', 'admin', '', 0, 'admin,tom,jack', 'admin','' );
insert into s2_model (id, `name`, biz_name, domain_id, created_at, created_by, updated_at, updated_by, `admin`, admin_org, is_open, viewer, view_org, entity) VALUES(2, '艺人库', 'singer', 1, '2023-05-24 00:00:00', 'admin', '2023-05-24 00:00:00', 'admin', 'admin', '', 0, 'admin,tom,jack', 'admin','{"entityId": 7, "names": ["歌手", "艺人"]}' );
insert into s2_database (id, `name`, description, `type` ,config ,created_at ,created_by ,updated_at ,updated_by, `admin`) VALUES(1, 'H2数据实例', '', 'h2', '{"password":"semantic","url":"jdbc:h2:mem:semantic;DATABASE_TO_UPPER=false","userName":"root"}', '2023-05-24 00:00:00', 'admin', '2023-05-24 00:00:00', 'admin', 'admin');
insert into s2_datasource (id , model_id, `name`, biz_name, description, database_id ,datasource_detail, created_at, created_by, updated_at, updated_by ) VALUES(1, 1, '停留时长统计', 's2_stay_time_statis', '停留时长统计', 1, '{"dimensions":[{"bizName":"imp_date","dateFormat":"yyyy-MM-dd","expr":"imp_date","isCreateDimension":0,"type":"time","typeParams":{"isPrimary":"true","timeGranularity":"day"}},{"bizName":"page","dateFormat":"yyyy-MM-dd","expr":"page","isCreateDimension":0,"type":"categorical"}],"identifiers":[{"bizName":"user_name","name":"用户名","type":"primary"}],"measures":[{"agg":"sum","bizName":"s2_stay_time_statis_stay_hours","expr":"stay_hours","isCreateMetric":1,"name":"停留时长"}],"queryType":"sql_query","sqlQuery":"SELECT imp_date, page,user_name,stay_hours FROM s2_stay_time_statis"}', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_datasource (id , model_id, `name`, biz_name, description, database_id ,datasource_detail, created_at, created_by, updated_at, updated_by ) VALUES(2, 1, 'PVUV统计', 's2_pv_uv_statis', 'PVUV统计', 1, '{"dimensions":[{"bizName":"imp_date","dateFormat":"yyyy-MM-dd","expr":"imp_date","isCreateDimension":0,"type":"time","typeParams":{"isPrimary":"true","timeGranularity":"day"}},{"bizName":"page","dateFormat":"yyyy-MM-dd","expr":"page","isCreateDimension":0,"type":"categorical"}],"identifiers":[{"bizName":"user_name","name":"用户名","type":"primary"}],"measures":[{"agg":"sum","bizName":"s2_pv_uv_statis_pv","expr":"pv","isCreateMetric":1,"name":"访问次数"},{"agg":"count_distinct","bizName":"s2_pv_uv_statis_uv","expr":"uv","isCreateMetric":1,"name":"访问人数"}],"queryType":"sql_query","sqlQuery":"SELECT imp_date, user_name,page,1 as pv, user_name as uv FROM s2_pv_uv_statis"}', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_datasource (id , model_id, `name`, biz_name, description, database_id ,datasource_detail, created_at, created_by, updated_at, updated_by ) VALUES(3, 1, '用户部门', 'user_department', '用户部门', 1, '{"dimensions":[{"bizName":"department","dateFormat":"yyyy-MM-dd","expr":"department","isCreateDimension":1,"name":"部门","type":"categorical"}],"identifiers":[{"bizName":"user_name","name":"用户名","type":"primary"}],"measures":[],"queryType":"sql_query","sqlQuery":"SELECT user_name,department FROM s2_user_department"}', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_datasource (id , model_id, `name`, biz_name, description, database_id ,datasource_detail, created_at, created_by, updated_at, updated_by ) VALUES(4, 2, '艺人库', 'singer', '艺人库', 1, '{"dimensions":[{"bizName":"imp_date","dateFormat":"yyyy-MM-dd","expr":"imp_date","isCreateDimension":0,"type":"time","typeParams":{"isPrimary":"true","timeGranularity":"day"}},{"bizName":"act_area","dateFormat":"yyyy-MM-dd","expr":"act_area","isCreateDimension":1,"name":"活跃区域","type":"categorical"},{"bizName":"song_name","dateFormat":"yyyy-MM-dd","expr":"song_name","isCreateDimension":1,"name":"代表作","type":"categorical"},{"bizName":"genre","dateFormat":"yyyy-MM-dd","expr":"genre","isCreateDimension":1,"name":"风格","type":"categorical"}],"identifiers":[{"bizName":"singer_name","name":"歌手名","type":"primary"}],"measures":[{"agg":"sum","bizName":"music_down_cnt","expr":"down_cnt","isCreateMetric":1,"name":"下载量"},{"agg":"sum","bizName":"music_js_play_cnt","expr":"js_play_cnt","isCreateMetric":1,"name":"播放量"},{"agg":"sum","bizName":"music_favor_cnt","expr":"favor_cnt","isCreateMetric":1,"name":"收藏量"}],"queryType":"sql_query","sqlQuery":"SELECT imp_date,singer_name,act_area,song_name,genre,js_play_cnt,down_cnt,favor_cnt FROM singer "}', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_datasource_rela (id , model_id, `datasource_from`, datasource_to, join_key, created_at, created_by, updated_at, updated_by ) VALUES(1, 1, 1, 2, 'user_name', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_datasource_rela (id , model_id, `datasource_from`, datasource_to, join_key, created_at, created_by, updated_at, updated_by ) VALUES(2, 1, 1, 3, 'user_name', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_datasource_rela (id , model_id, `datasource_from`, datasource_to, join_key, created_at, created_by, updated_at, updated_by ) VALUES(3, 1, 2, 3, 'user_name', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type, dim_value_maps) VALUES(1, 1, 3, '部门', 'department', '部门', 1, 0, 'categorical', NULL, 'department', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY', '[{"alias":["人力资源","人力"],"bizName":"人力资源","techName":"HR"},{"alias":["营销","销售"],"bizName":"营销部门","techName":"sales"}]');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type) VALUES(2, 1, 1, '用户名', 'user_name', '用户名', 1, 0, 'primary', NULL, 'user_name', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type) VALUES(3, 1, 2, '页面', 'page', '页面', 1, 2, 'categorical', NULL, 'page', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type) VALUES(4, 2, 4, '活跃区域', 'act_area', '活跃区域', 1, 2, 'categorical', NULL, 'act_area', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type) VALUES(5, 2, 4, '代表作', 'song_name', '代表作', 1, 2, 'categorical', NULL, 'song_name', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type) VALUES(6, 2, 4, '风格', 'genre', '风格', 1, 2, 'categorical', NULL, 'genre', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type) VALUES(7, 2, 4, '歌手名', 'singer_name', '歌手名', 1, 2, 'categorical', NULL, 'singer_name', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY');
insert into s2_metric (id, model_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, created_at, created_by, updated_at, updated_by, data_format_type, data_format) VALUES(1, 1, '停留时长', 'stay_hours', '停留时长', 1, 2, 'ATOMIC', '{"expr":"s2_stay_time_statis_stay_hours","measures":[{"agg":"sum","expr":"stay_hours","isCreateMetric":1,"datasourceId":1,"bizName":"s2_stay_time_statis_stay_hours","name":"s2_stay_time_statis_stay_hours"}]}' , '2023-05-24 17:00:00', 'admin', '2023-05-25 00:00:00', 'admin', NULL, NULL );
insert into s2_metric (id, model_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, created_at, created_by, updated_at, updated_by, data_format_type, data_format) VALUES(2, 1, '访问次数', 'pv', '访问次数', 1, 0, 'ATOMIC', ' {"expr":"s2_pv_uv_statis_pv","measures":[{"agg":"sum","bizName":"s2_pv_uv_statis_pv","datasourceId":2,"expr":"pv","isCreateMetric":1,"name":"s2_pv_uv_statis_pv"}]}' , '2023-05-24 17:00:00', 'admin', '2023-05-25 00:00:00', 'admin', NULL, NULL );
insert into s2_metric (id, model_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, created_at, created_by, updated_at, updated_by, data_format_type, data_format) VALUES(3, 1, '访问人数', 'uv', '访问人数', 1, 0, 'ATOMIC', ' {"expr":"s2_pv_uv_statis_uv","measures":[{"agg":"count_distinct","bizName":"s2_pv_uv_statis_uv","datasourceId":2,"expr":"uv","isCreateMetric":1,"name":"s2_pv_uv_statis_uv"}]}' , '2023-05-24 17:00:00', 'admin', '2023-05-25 00:00:00', 'admin', NULL, NULL );
insert into s2_metric (id, model_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, created_at, created_by, updated_at, updated_by, data_format_type, data_format) VALUES(4, 2, '播放量', 'js_play_cnt', '播放量', 1, 2, 'ATOMIC', '{"expr":"music_js_play_cnt","measures":[{"agg":"sum","expr":"js_play_cnt","isCreateMetric":1,"datasourceId":4,"bizName":"music_js_play_cnt","name":"music_js_play_cnt"}]}' , '2023-05-24 17:00:00', 'admin', '2023-05-25 00:00:00', 'admin', NULL, NULL );
insert into s2_metric (id, model_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, created_at, created_by, updated_at, updated_by, data_format_type, data_format) VALUES(5, 2, '下载量', 'down_cnt', '下载量', 1, 0, 'ATOMIC', ' {"expr":"music_down_cnt","measures":[{"agg":"sum","bizName":"music_down_cnt","datasourceId":4,"expr":"down_cnt","isCreateMetric":1,"name":"music_down_cnt"}]}' , '2023-05-24 17:00:00', 'admin', '2023-05-25 00:00:00', 'admin', NULL, NULL );
insert into s2_metric (id, model_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, created_at, created_by, updated_at, updated_by, data_format_type, data_format) VALUES(6, 2, '收藏量', 'favor_cnt', '收藏量', 1, 0, 'ATOMIC', ' {"expr":"music_favor_cnt","measures":[{"agg":"sum","bizName":"music_favor_cnt","datasourceId":4,"expr":"favor_cnt","isCreateMetric":1,"name":"music_favor_cnt"}]}' , '2023-05-24 17:00:00', 'admin', '2023-05-25 00:00:00', 'admin', NULL, NULL );
insert into s2_available_date_info(`item_id` ,`type` ,`date_format` ,`start_date` ,`end_date` ,`unavailable_date` ,`created_at` ,`created_by` ,`updated_at` ,`updated_by` )
values (1, 'dimension', 'yyyy-MM-dd', DATEADD('DAY', -28, CURRENT_DATE()), DATEADD('DAY', -1, CURRENT_DATE()), '[]', '2023-06-01', 'admin', '2023-06-01', 'admin');
insert into s2_available_date_info(`item_id` ,`type` ,`date_format` ,`start_date` ,`end_date` ,`unavailable_date` ,`created_at` ,`created_by` ,`updated_at` ,`updated_by` )
@@ -38,11 +12,6 @@ values (2, 'dimension', 'yyyy-MM-dd', DATEADD('DAY', -28, CURRENT_DATE()), DATEA
insert into s2_available_date_info(`item_id` ,`type` ,`date_format` ,`start_date` ,`end_date` ,`unavailable_date` ,`created_at` ,`created_by` ,`updated_at` ,`updated_by` )
values (3, 'dimension', 'yyyy-MM-dd', DATEADD('DAY', -28, CURRENT_DATE()), DATEADD('DAY', -1, CURRENT_DATE()), '[]', '2023-06-01', 'admin', '2023-06-01', 'admin');
insert into s2_auth_groups (group_id, config)
values (1, '{"modelId":"1","name":"admin-permission","groupId":1,"authRules":[{"metrics":["stay_hours"],"dimensions":["page"]}],"dimensionFilters":[""],"dimensionFilterDescription":"授权admin 页面和停留时长权限","authorizedUsers":["admin"],"authorizedDepartmentIds":[]}');
insert into s2_auth_groups (group_id, config)
values (2, '{"modelId":"1","name":"tom_sales_permission","groupId":2,"authRules":[{"metrics":["stay_hours"],"dimensions":["page"]}],"dimensionFilters":["department in (''sales'')"],"dimensionFilterDescription":"部门 in [sales]", "authorizedUsers":["tom"],"authorizedDepartmentIds":[]}');
-- sample data
INSERT INTO singer (imp_date,singer_name,act_area, song_name,genre,js_play_cnt,down_cnt,favor_cnt) VALUES (DATEADD('DAY', -1, CURRENT_DATE()), '周杰伦', '港台','青花瓷','国风',1000000,1000000,1000000);
INSERT INTO singer (imp_date,singer_name,act_area, song_name,genre,js_play_cnt,down_cnt,favor_cnt) VALUES (DATEADD('DAY', -5, CURRENT_DATE()), '周杰伦', '港台','青花瓷','国风',1000000,1000000,1000000);
@@ -1108,3 +1077,35 @@ INSERT INTO s2_stay_time_statis (imp_date, user_name, stay_hours, page) VALUES (
INSERT INTO s2_stay_time_statis (imp_date, user_name, stay_hours, page) VALUES (DATEADD('DAY', -19, CURRENT_DATE()), 'alice', '0.8131712486302015', 'p2');
INSERT INTO s2_stay_time_statis (imp_date, user_name, stay_hours, page) VALUES (DATEADD('DAY', -15, CURRENT_DATE()), 'lucy', '0.8124302447925607', 'p4');
INSERT INTO s2_stay_time_statis (imp_date, user_name, stay_hours, page) VALUES (DATEADD('DAY', -8, CURRENT_DATE()), 'lucy', '0.039935860913407284', 'p2');
insert into genre(g_name,rating,most_popular_in) VALUES ('tagore',8,'孟加拉国');
insert into genre(g_name,rating,most_popular_in) VALUES ('nazrul',7,'孟加拉国');
insert into genre(g_name,rating,most_popular_in) VALUES ('民间',9,'锡尔赫特、吉大港、库斯蒂亚');
insert into genre(g_name,rating,most_popular_in) VALUES ('现代',8,'孟加拉国');
insert into genre(g_name,rating,most_popular_in) VALUES ('蓝调',7,'加拿大');
insert into genre(g_name,rating,most_popular_in) VALUES ('流行',9,'美国');
insert into artist(artist_name,country,gender,g_name) VALUES ('Shrikanta','印度','男性','tagore');
insert into artist(artist_name,country,gender,g_name) VALUES ('Prity','孟加拉国','女性','nazrul');
insert into artist(artist_name,country,gender,g_name) VALUES ('Farida','孟加拉国','女性','民间');
insert into artist(artist_name,country,gender,g_name) VALUES ('Topu','印度','女性','现代');
insert into artist(artist_name,country,gender,g_name) VALUES ('Enrique','美国','男性','蓝调');
insert into artist(artist_name,country,gender,g_name) VALUES ('Michel','英国','男性','流行');
insert into files(f_id,artist_name,file_size,duration,formats) VALUES (1,'Shrikanta','3.78 MB','3:45','mp4');
insert into files(f_id,artist_name,file_size,duration,formats) VALUES (2,'Prity','4.12 MB','2:56','mp3');
insert into files(f_id,artist_name,file_size,duration,formats) VALUES (3,'Farida','3.69 MB','4:12','mp4');
insert into files(f_id,artist_name,file_size,duration,formats) VALUES (4,'Enrique','4.58 MB','5:23','mp4');
insert into files(f_id,artist_name,file_size,duration,formats) VALUES (5,'Michel','5.10 MB','4:34','mp3');
insert into files(f_id,artist_name,file_size,duration,formats) VALUES (6,'Topu','4.10 MB','4:30','mp4');
insert into song(imp_date,song_name,artist_name,country,f_id,g_name,rating,languages,releasedate,resolution) VALUES (DATEADD('DAY', 0, CURRENT_DATE()),'Tumi 长袍 尼罗布','Shrikanta','印度',1,'tagore',8,'孟加拉语','28-AUG-2011',1080);
insert into song(imp_date,song_name,artist_name,country,f_id,g_name,rating,languages,releasedate,resolution) VALUES (DATEADD('DAY', 0, CURRENT_DATE()),'舒克诺 帕塔尔 努普尔 帕埃','Prity','孟加拉国',2,'nazrul',5,'孟加拉语','21-SEP-1997',512);
insert into song(imp_date,song_name,artist_name,country,f_id,g_name,rating,languages,releasedate,resolution) VALUES (DATEADD('DAY', 0, CURRENT_DATE()),'阿米·奥帕尔·霍伊','Farida','孟加拉国',3,'民间',7,'孟加拉语','7-APR-2001',320);
insert into song(imp_date,song_name,artist_name,country,f_id,g_name,rating,languages,releasedate,resolution) VALUES (DATEADD('DAY', 0, CURRENT_DATE()),'我的爱','Enrique','美国',4,'蓝调',6,'英文','24-JAN-2007',1080);
insert into song(imp_date,song_name,artist_name,country,f_id,g_name,rating,languages,releasedate,resolution) VALUES (DATEADD('DAY', 0, CURRENT_DATE()),'打败它','Michel','英国',5,'流行',8,'英文','17-MAR-2002',720);
insert into song(imp_date,song_name,artist_name,country,f_id,g_name,rating,languages,releasedate,resolution) VALUES (DATEADD('DAY', 0, CURRENT_DATE()),'阿杰伊阿卡什','Topu','印度',6,'现代',10,'孟加拉语','27-MAR-2004',320);
-- benchmark

View File

@@ -414,4 +414,47 @@ COMMENT ON TABLE s2_dictionary_task IS 'dictionary task information table';
-- benchmark
CREATE TABLE IF NOT EXISTS `genre` (
`g_name` varchar(20) NOT NULL , -- genre name
`rating` INT ,
`most_popular_in` varchar(50) ,
PRIMARY KEY (`g_name`)
);
COMMENT ON TABLE genre IS 'genre';
CREATE TABLE IF NOT EXISTS `artist` (
`artist_name` varchar(50) NOT NULL , -- genre name
`country` varchar(20) ,
`gender` varchar(20) ,
`g_name` varchar(50)
);
COMMENT ON TABLE artist IS 'artist';
CREATE TABLE IF NOT EXISTS `files` (
`f_id` bigINT NOT NULL,
`artist_name` varchar(50) ,
`file_size` varchar(20) ,
`duration` varchar(20) ,
`formats` varchar(20) ,
PRIMARY KEY (`f_id`)
);
COMMENT ON TABLE files IS 'files';
CREATE TABLE IF NOT EXISTS `song` (
`imp_date` varchar(50) ,
`song_name` varchar(50) ,
`artist_name` varchar(50) ,
`country` varchar(20) ,
`f_id` bigINT ,
`g_name` varchar(20) ,
`rating` INT ,
`languages` varchar(20) ,
`releasedate` varchar(50) ,
`resolution` bigINT NOT NULL
);
COMMENT ON TABLE song IS 'song';
-- benchmark

View File

@@ -1,2 +1,2 @@
root=.
CustomDictionaryPath=data/dictionary/custom/DimValue_1_1.txt;data/dictionary/custom/DimValue_1_2.txt;data/dictionary/custom/DimValue_1_3.txt;
CustomDictionaryPath=data/dictionary/custom/DimValue_1_1.txt;data/dictionary/custom/DimValue_1_2.txt;data/dictionary/custom/DimValue_1_3.txt;data/dictionary/custom/benchmark_cspider.txt;

View File

@@ -0,0 +1,10 @@
package com.tencent.supersonic.benchmark;
import org.junit.Test;
public class CSpider {
@Test
public void case1(){
}
}

View File

@@ -210,7 +210,7 @@ public class MetricQueryTest extends BaseQueryTest {
ChatConfigEditReqReq extendEditCmd = new ChatConfigEditReqReq();
BeanUtils.copyProperties(chatConfig, extendEditCmd);
// add blacklist
List<Long> blackMetrics = Arrays.asList(3L);
List<Long> blackMetrics = Arrays.asList(2L);
extendEditCmd.getChatAggConfig().getVisibility().setBlackMetricIdList(blackMetrics);
configService.editConfig(extendEditCmd, User.getFakeUser());

View File

@@ -4,32 +4,6 @@ insert into s2_user (id, `name`, password, display_name, email) values (2, 'jack
insert into s2_user (id, `name`, password, display_name, email) values (3, 'tom','123456','tom','tom@xx.com');
insert into s2_user (id, `name`, password, display_name, email) values (4, 'lucy','123456','lucy','lucy@xx.com');
-- sample models
insert into s2_domain (id, `name`, biz_name, parent_id, status, created_at, created_by, updated_at, updated_by, `admin`, admin_org, viewer, view_org) VALUES(1, '超音数', 'supersonic', 0, 1, '2023-05-24 00:00:00', 'admin', '2023-05-24 00:00:00', 'admin', 'admin', '', 'admin,tom,jack', 'admin' );
insert into s2_model (id, `name`, biz_name, domain_id, created_at, created_by, updated_at, updated_by, `admin`, admin_org, is_open, viewer, view_org, entity) VALUES(1, '超音数', 'supersonic', 1, '2023-05-24 00:00:00', 'admin', '2023-05-24 00:00:00', 'admin', 'admin', '', 0, 'admin,tom,jack', 'admin','' );
insert into s2_model (id, `name`, biz_name, domain_id, created_at, created_by, updated_at, updated_by, `admin`, admin_org, is_open, viewer, view_org, entity) VALUES(2, '艺人库', 'singer', 1, '2023-05-24 00:00:00', 'admin', '2023-05-24 00:00:00', 'admin', 'admin', '', 0, 'admin,tom,jack', 'admin','{"entityId": 7, "names": ["歌手", "艺人"]}' );
insert into s2_database (id, `name`, description, `type` ,config ,created_at ,created_by ,updated_at ,updated_by, `admin`) VALUES(1, 'H2数据实例', '', 'h2', '{"password":"semantic","url":"jdbc:h2:mem:semantic;DATABASE_TO_UPPER=false","userName":"root"}', '2023-05-24 00:00:00', 'admin', '2023-05-24 00:00:00', 'admin', 'admin');
insert into s2_datasource (id , model_id, `name`, biz_name, description, database_id ,datasource_detail, created_at, created_by, updated_at, updated_by ) VALUES(1, 1, '停留时长统计', 's2_stay_time_statis', '停留时长统计', 1, '{"dimensions":[{"bizName":"imp_date","dateFormat":"yyyy-MM-dd","expr":"imp_date","isCreateDimension":0,"type":"time","typeParams":{"isPrimary":"true","timeGranularity":"day"}},{"bizName":"page","dateFormat":"yyyy-MM-dd","expr":"page","isCreateDimension":0,"type":"categorical"}],"identifiers":[{"bizName":"user_name","name":"用户名","type":"primary"}],"measures":[{"agg":"sum","bizName":"s2_stay_time_statis_stay_hours","expr":"stay_hours","isCreateMetric":1,"name":"停留时长"}],"queryType":"sql_query","sqlQuery":"SELECT imp_date, page,user_name,stay_hours FROM s2_stay_time_statis"}', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_datasource (id , model_id, `name`, biz_name, description, database_id ,datasource_detail, created_at, created_by, updated_at, updated_by ) VALUES(2, 1, 'PVUV统计', 's2_pv_uv_statis', 'PVUV统计', 1, '{"dimensions":[{"bizName":"imp_date","dateFormat":"yyyy-MM-dd","expr":"imp_date","isCreateDimension":0,"type":"time","typeParams":{"isPrimary":"true","timeGranularity":"day"}},{"bizName":"page","dateFormat":"yyyy-MM-dd","expr":"page","isCreateDimension":0,"type":"categorical"}],"identifiers":[{"bizName":"user_name","name":"用户名","type":"primary"}],"measures":[{"agg":"sum","bizName":"s2_pv_uv_statis_pv","expr":"pv","isCreateMetric":1,"name":"访问次数"},{"agg":"count_distinct","bizName":"s2_pv_uv_statis_uv","expr":"uv","isCreateMetric":1,"name":"访问人数"}],"queryType":"sql_query","sqlQuery":"SELECT imp_date, user_name,page,1 as pv, user_name as uv FROM s2_pv_uv_statis"}', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_datasource (id , model_id, `name`, biz_name, description, database_id ,datasource_detail, created_at, created_by, updated_at, updated_by ) VALUES(3, 1, '用户部门', 'user_department', '用户部门', 1, '{"dimensions":[{"bizName":"department","dateFormat":"yyyy-MM-dd","expr":"department","isCreateDimension":1,"name":"部门","type":"categorical"}],"identifiers":[{"bizName":"user_name","name":"用户名","type":"primary"}],"measures":[],"queryType":"sql_query","sqlQuery":"SELECT user_name,department FROM s2_user_department"}', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_datasource (id , model_id, `name`, biz_name, description, database_id ,datasource_detail, created_at, created_by, updated_at, updated_by ) VALUES(4, 2, '艺人库', 'singer', '艺人库', 1, '{"dimensions":[{"bizName":"imp_date","dateFormat":"yyyy-MM-dd","expr":"imp_date","isCreateDimension":0,"type":"time","typeParams":{"isPrimary":"true","timeGranularity":"day"}},{"bizName":"act_area","dateFormat":"yyyy-MM-dd","expr":"act_area","isCreateDimension":1,"name":"活跃区域","type":"categorical"},{"bizName":"song_name","dateFormat":"yyyy-MM-dd","expr":"song_name","isCreateDimension":1,"name":"代表作","type":"categorical"},{"bizName":"genre","dateFormat":"yyyy-MM-dd","expr":"genre","isCreateDimension":1,"name":"风格","type":"categorical"}],"identifiers":[{"bizName":"singer_name","name":"歌手名","type":"primary"}],"measures":[{"agg":"sum","bizName":"music_down_cnt","expr":"down_cnt","isCreateMetric":1,"name":"下载量"},{"agg":"sum","bizName":"music_js_play_cnt","expr":"js_play_cnt","isCreateMetric":1,"name":"播放量"},{"agg":"sum","bizName":"music_favor_cnt","expr":"favor_cnt","isCreateMetric":1,"name":"收藏量"}],"queryType":"sql_query","sqlQuery":"SELECT imp_date,singer_name,act_area,song_name,genre,js_play_cnt,down_cnt,favor_cnt FROM singer "}', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_datasource_rela (id , model_id, `datasource_from`, datasource_to, join_key, created_at, created_by, updated_at, updated_by ) VALUES(1, 1, 1, 2, 'user_name', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_datasource_rela (id , model_id, `datasource_from`, datasource_to, join_key, created_at, created_by, updated_at, updated_by ) VALUES(2, 1, 1, 3, 'user_name', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_datasource_rela (id , model_id, `datasource_from`, datasource_to, join_key, created_at, created_by, updated_at, updated_by ) VALUES(3, 1, 2, 3, 'user_name', '2023-05-25 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type, dim_value_maps) VALUES(1, 1, 3, '部门', 'department', '部门', 1, 0, 'categorical', NULL, 'department', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY', '[{"alias":["人力资源","人力"],"bizName":"人力资源","techName":"HR"},{"alias":["营销","销售"],"bizName":"营销部门","techName":"sales"}]');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type) VALUES(2, 1, 1, '用户名', 'user_name', '用户名', 1, 0, 'primary', NULL, 'user_name', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type) VALUES(3, 1, 2, '页面', 'page', '页面', 1, 2, 'categorical', NULL, 'page', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type) VALUES(4, 2, 4, '活跃区域', 'act_area', '活跃区域', 1, 2, 'categorical', NULL, 'act_area', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type) VALUES(5, 2, 4, '代表作', 'song_name', '代表作', 1, 2, 'categorical', NULL, 'song_name', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type) VALUES(6, 2, 4, '风格', 'genre', '风格', 1, 2, 'categorical', NULL, 'genre', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY');
insert into s2_dimension (id , model_id, datasource_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, expr, created_at, created_by, updated_at, updated_by, semantic_type) VALUES(7, 2, 4, '歌手名', 'singer_name', '歌手名', 1, 2, 'categorical', NULL, 'singer_name', '2023-05-24 00:00:00', 'admin', '2023-05-25 00:00:00', 'admin', 'CATEGORY');
insert into s2_metric (id, model_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, created_at, created_by, updated_at, updated_by, data_format_type, data_format) VALUES(1, 1, '停留时长', 'stay_hours', '停留时长', 1, 2, 'ATOMIC', '{"expr":"s2_stay_time_statis_stay_hours","measures":[{"agg":"sum","expr":"stay_hours","isCreateMetric":1,"datasourceId":1,"bizName":"s2_stay_time_statis_stay_hours","name":"s2_stay_time_statis_stay_hours"}]}' , '2023-05-24 17:00:00', 'admin', '2023-05-25 00:00:00', 'admin', NULL, NULL );
insert into s2_metric (id, model_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, created_at, created_by, updated_at, updated_by, data_format_type, data_format) VALUES(2, 1, '访问次数', 'pv', '访问次数', 1, 0, 'ATOMIC', ' {"expr":"s2_pv_uv_statis_pv","measures":[{"agg":"sum","bizName":"s2_pv_uv_statis_pv","datasourceId":2,"expr":"pv","isCreateMetric":1,"name":"s2_pv_uv_statis_pv"}]}' , '2023-05-24 17:00:00', 'admin', '2023-05-25 00:00:00', 'admin', NULL, NULL );
insert into s2_metric (id, model_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, created_at, created_by, updated_at, updated_by, data_format_type, data_format) VALUES(3, 1, '访问人数', 'uv', '访问人数', 1, 0, 'ATOMIC', ' {"expr":"s2_pv_uv_statis_uv","measures":[{"agg":"count_distinct","bizName":"s2_pv_uv_statis_uv","datasourceId":2,"expr":"uv","isCreateMetric":1,"name":"s2_pv_uv_statis_uv"}]}' , '2023-05-24 17:00:00', 'admin', '2023-05-25 00:00:00', 'admin', NULL, NULL );
insert into s2_metric (id, model_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, created_at, created_by, updated_at, updated_by, data_format_type, data_format) VALUES(4, 2, '播放量', 'js_play_cnt', '播放量', 1, 2, 'ATOMIC', '{"expr":"music_js_play_cnt","measures":[{"agg":"sum","expr":"js_play_cnt","isCreateMetric":1,"datasourceId":4,"bizName":"music_js_play_cnt","name":"music_js_play_cnt"}]}' , '2023-05-24 17:00:00', 'admin', '2023-05-25 00:00:00', 'admin', NULL, NULL );
insert into s2_metric (id, model_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, created_at, created_by, updated_at, updated_by, data_format_type, data_format) VALUES(5, 2, '下载量', 'down_cnt', '下载量', 1, 0, 'ATOMIC', ' {"expr":"music_down_cnt","measures":[{"agg":"sum","bizName":"music_down_cnt","datasourceId":4,"expr":"down_cnt","isCreateMetric":1,"name":"music_down_cnt"}]}' , '2023-05-24 17:00:00', 'admin', '2023-05-25 00:00:00', 'admin', NULL, NULL );
insert into s2_metric (id, model_id, `name`, biz_name, description, status, sensitive_level, `type`, type_params, created_at, created_by, updated_at, updated_by, data_format_type, data_format) VALUES(6, 2, '收藏量', 'favor_cnt', '收藏量', 1, 0, 'ATOMIC', ' {"expr":"music_favor_cnt","measures":[{"agg":"sum","bizName":"music_favor_cnt","datasourceId":4,"expr":"favor_cnt","isCreateMetric":1,"name":"music_favor_cnt"}]}' , '2023-05-24 17:00:00', 'admin', '2023-05-25 00:00:00', 'admin', NULL, NULL );
insert into s2_available_date_info(`item_id` ,`type` ,`date_format` ,`start_date` ,`end_date` ,`unavailable_date` ,`created_at` ,`created_by` ,`updated_at` ,`updated_by` )
values (1, 'dimension', 'yyyy-MM-dd', DATEADD('DAY', -28, CURRENT_DATE()), DATEADD('DAY', -1, CURRENT_DATE()), '[]', '2023-06-01', 'admin', '2023-06-01', 'admin');
insert into s2_available_date_info(`item_id` ,`type` ,`date_format` ,`start_date` ,`end_date` ,`unavailable_date` ,`created_at` ,`created_by` ,`updated_at` ,`updated_by` )
@@ -37,11 +11,6 @@ values (2, 'dimension', 'yyyy-MM-dd', DATEADD('DAY', -28, CURRENT_DATE()), DATEA
insert into s2_available_date_info(`item_id` ,`type` ,`date_format` ,`start_date` ,`end_date` ,`unavailable_date` ,`created_at` ,`created_by` ,`updated_at` ,`updated_by` )
values (3, 'dimension', 'yyyy-MM-dd', DATEADD('DAY', -28, CURRENT_DATE()), DATEADD('DAY', -1, CURRENT_DATE()), '[]', '2023-06-01', 'admin', '2023-06-01', 'admin');
insert into s2_auth_groups (group_id, config)
values (1, '{"modelId":"1","name":"admin-permission","groupId":1,"authRules":[{"metrics":["stay_hours"],"dimensions":["page"]}],"dimensionFilters":[""],"dimensionFilterDescription":"授权admin 页面和停留时长权限","authorizedUsers":["admin"],"authorizedDepartmentIds":[]}');
insert into s2_auth_groups (group_id, config)
values (2, '{"modelId":"1","name":"tom_sales_permission","groupId":2,"authRules":[{"metrics":["stay_hours"],"dimensions":["page"]}],"dimensionFilters":["department in (''sales'')"],"dimensionFilterDescription":"开通 tom sales部门权限", "authorizedUsers":["tom"],"authorizedDepartmentIds":[]}');
-- sample data
INSERT INTO singer (imp_date,singer_name,act_area, song_name,genre,js_play_cnt,down_cnt,favor_cnt) VALUES (DATEADD('DAY', -1, CURRENT_DATE()), '周杰伦', '中国','青花瓷','流行',1000000,1000000,1000000);
INSERT INTO singer (imp_date,singer_name,act_area, song_name,genre,js_play_cnt,down_cnt,favor_cnt) VALUES (DATEADD('DAY', -5, CURRENT_DATE()), '周杰伦', '中国','青花瓷','流行',1000000,1000000,1000000);

43
pom.xml
View File

@@ -65,6 +65,11 @@
<mockito-inline.version>4.5.1</mockito-inline.version>
<jsqlparser.version>4.5</jsqlparser.version>
<revision>0.7.5-SNAPSHOT</revision>
<!-- Do not bump spotless plugin version since 2.30.0 is the latest version supports Java 8-->
<maven.plugin.spotless.version>2.30.0</maven.plugin.spotless.version>
<spotless.python.includes></spotless.python.includes>
<!-- Do not bump black version as decided by spotless maven plugin-->
<spotless.python.black.version>22.3.0</spotless.python.black.version>
</properties>
<dependencyManagement>
@@ -101,6 +106,15 @@
</dependencies>
</dependencyManagement>
<profiles>
<profile>
<id>spotless-python</id>
<properties>
<spotless.python.includes>src/**/*.py</spotless.python.includes>
</properties>
</profile>
</profiles>
<build>
<plugins>
<plugin>
@@ -147,6 +161,10 @@
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-checkstyle-plugin</artifactId>
</plugin>
<plugin>
<groupId>com.diffplug.spotless</groupId>
<artifactId>spotless-maven-plugin</artifactId>
</plugin>
</plugins>
<pluginManagement>
<plugins>
@@ -185,6 +203,31 @@
</execution>
</executions>
</plugin>
<plugin>
<groupId>com.diffplug.spotless</groupId>
<artifactId>spotless-maven-plugin</artifactId>
<version>${maven.plugin.spotless.version}</version>
<configuration>
<upToDateChecking>
<enabled>true</enabled>
</upToDateChecking>
<python>
<includes>
<include>${spotless.python.includes}</include>
</includes>
<black>
<version>${spotless.python.black.version}</version>
</black>
</python>
</configuration>
<executions>
<execution>
<goals>
<goal>check</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</pluginManagement>
</build>

View File

@@ -0,0 +1,9 @@
package com.tencent.supersonic.semantic.api.model.enums;
public enum IdentifyTypeEnum {
primary,
foreign,
}

View File

@@ -0,0 +1,10 @@
package com.tencent.supersonic.semantic.api.model.enums;
public enum SemanticTypeEnum {
CATEGORY,
ID,
DATE,
NUMBER
}

View File

@@ -25,6 +25,13 @@ public class Dim {
private String bizName;
public Dim(String name, String bizName, String type, Integer isCreateDimension) {
this.name = name;
this.type = type;
this.isCreateDimension = isCreateDimension;
this.bizName = bizName;
}
public static Dim getDefault() {
return new Dim("日期", "time", "2023-05-28",
Constants.DAY_FORMAT,

View File

@@ -10,8 +10,8 @@ import lombok.NoArgsConstructor;
@NoArgsConstructor
public class DimensionTimeTypeParams {
private String isPrimary;
private String isPrimary = "true";
private String timeGranularity;
private String timeGranularity = "day";
}

View File

@@ -28,5 +28,10 @@ public class Measure {
private Long datasourceId;
public Measure(String name, String bizName, String agg, Integer isCreateMetric) {
this.name = name;
this.agg = agg;
this.isCreateMetric = isCreateMetric;
this.bizName = bizName;
}
}

View File

@@ -1,26 +1,30 @@
package com.tencent.supersonic.semantic.model.application;
import com.tencent.supersonic.semantic.api.model.pojo.ItemDateFilter;
import com.tencent.supersonic.semantic.api.model.response.MetricResp;
import com.tencent.supersonic.semantic.api.model.response.DatabaseResp;
import com.tencent.supersonic.semantic.api.model.response.ModelResp;
import com.tencent.supersonic.semantic.api.model.response.DatasourceResp;
import com.tencent.supersonic.semantic.api.model.response.DimensionResp;
import com.tencent.supersonic.semantic.api.model.response.ItemDateResp;
import com.tencent.supersonic.semantic.api.model.response.MeasureResp;
import com.tencent.supersonic.semantic.api.model.response.MetricResp;
import com.tencent.supersonic.semantic.api.model.response.ModelResp;
import com.tencent.supersonic.semantic.api.model.yaml.DatasourceYamlTpl;
import com.tencent.supersonic.semantic.api.model.yaml.DimensionYamlTpl;
import com.tencent.supersonic.semantic.api.model.yaml.MetricYamlTpl;
import com.tencent.supersonic.semantic.model.domain.DatabaseService;
import com.tencent.supersonic.semantic.model.domain.ModelService;
import com.tencent.supersonic.semantic.model.domain.DimensionService;
import com.tencent.supersonic.semantic.model.domain.DatasourceService;
import com.tencent.supersonic.semantic.model.domain.MetricService;
import com.tencent.supersonic.semantic.model.domain.Catalog;
import com.tencent.supersonic.semantic.model.domain.DatabaseService;
import com.tencent.supersonic.semantic.model.domain.DatasourceService;
import com.tencent.supersonic.semantic.model.domain.DimensionService;
import com.tencent.supersonic.semantic.model.domain.MetricService;
import com.tencent.supersonic.semantic.model.domain.ModelService;
import java.util.List;
import java.util.Map;
import java.util.Objects;
import java.util.Optional;
import java.util.Set;
import lombok.extern.slf4j.Slf4j;
import org.springframework.stereotype.Component;
import org.springframework.util.CollectionUtils;
@Slf4j
@Component
@@ -96,4 +100,26 @@ public class CatalogImpl implements Catalog {
public ItemDateResp getItemDate(ItemDateFilter dimension, ItemDateFilter metric) {
return datasourceService.getItemDate(dimension, metric);
}
@Override
public String getAgg(Long modelId, String metricBizName) {
List<MetricResp> metricResps = getMetrics(modelId);
if (!CollectionUtils.isEmpty(metricResps)) {
Optional<MetricResp> metric = metricResps.stream()
.filter(m -> m.getBizName().equalsIgnoreCase(metricBizName)).findFirst();
if (metric.isPresent() && Objects.nonNull(metric.get().getTypeParams()) && !CollectionUtils.isEmpty(
metric.get().getTypeParams().getMeasures())) {
List<MeasureResp> measureRespList = datasourceService.getMeasureListOfModel(modelId);
if (!CollectionUtils.isEmpty(measureRespList)) {
String measureName = metric.get().getTypeParams().getMeasures().get(0).getBizName();
Optional<MeasureResp> measure = measureRespList.stream()
.filter(m -> m.getBizName().equalsIgnoreCase(measureName)).findFirst();
if (measure.isPresent()) {
return measure.get().getAgg();
}
}
}
}
return "";
}
}

View File

@@ -221,7 +221,7 @@ public class ModelServiceImpl implements ModelService {
@Override
public Map<Long, String> getModelFullPathMap() {
return getModelList().stream().collect(Collectors.toMap(ModelResp::getId,
return getModelList().stream().filter(m -> m != null).collect(Collectors.toMap(ModelResp::getId,
ModelResp::getFullPath, (k1, k2) -> k1));
}

View File

@@ -1,14 +1,14 @@
package com.tencent.supersonic.semantic.model.domain;
import com.tencent.supersonic.semantic.api.model.pojo.ItemDateFilter;
import com.tencent.supersonic.semantic.api.model.yaml.DatasourceYamlTpl;
import com.tencent.supersonic.semantic.api.model.yaml.DimensionYamlTpl;
import com.tencent.supersonic.semantic.api.model.yaml.MetricYamlTpl;
import com.tencent.supersonic.semantic.api.model.response.DatabaseResp;
import com.tencent.supersonic.semantic.api.model.response.DatasourceResp;
import com.tencent.supersonic.semantic.api.model.response.DimensionResp;
import com.tencent.supersonic.semantic.api.model.response.ItemDateResp;
import com.tencent.supersonic.semantic.api.model.response.MetricResp;
import com.tencent.supersonic.semantic.api.model.yaml.DatasourceYamlTpl;
import com.tencent.supersonic.semantic.api.model.yaml.DimensionYamlTpl;
import com.tencent.supersonic.semantic.api.model.yaml.MetricYamlTpl;
import java.util.List;
import java.util.Map;
import java.util.Set;
@@ -16,6 +16,7 @@ import java.util.Set;
public interface Catalog {
DatabaseResp getDatabase(Long id);
DatabaseResp getDatabaseByModelId(Long modelId);
List<DatasourceResp> getDatasourceList(Long modelId);
@@ -36,4 +37,6 @@ public interface Catalog {
ItemDateResp getItemDate(ItemDateFilter dimension, ItemDateFilter metric);
String getAgg(Long modelId, String metricBizName);
}

View File

@@ -29,8 +29,13 @@ public class H2Adaptor extends EngineAdaptor {
@Override
public String getColumnMetaQueryTpl() {
return "SELECT COLUMN_NAME AS name, DATA_TYPE AS dataType\n"
+ "FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_SCHEMA ='%s' AND TABLE_NAME = '%s'";
return "SELECT COLUMN_NAME AS name, "
+ " case DATA_TYPE"
+ " when '12' then 'varchar'"
+ " when '-5' then 'integer'"
+ " when '8' then 'double'"
+ " end AS dataType"
+ " FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_SCHEMA ='%s' AND TABLE_NAME = '%s'";
}
@Override

View File

@@ -10,6 +10,10 @@ import lombok.NoArgsConstructor;
@NoArgsConstructor
public class Identify {
public enum Type {
PRIMARY, FOREIGN
}
private String name;
// primary or foreign

View File

@@ -1,5 +1,6 @@
package com.tencent.supersonic.semantic.query.parser.calcite.sql;
import com.tencent.supersonic.semantic.query.parser.calcite.dsl.DataSource;
import java.util.ArrayList;
import java.util.List;
import java.util.stream.Collectors;
@@ -25,6 +26,8 @@ public class TableView {
private String alias;
private List<String> primary;
private DataSource dataSource;
public SqlNode build() {
measure.addAll(dimension);
SqlNodeList dimensionNodeList = null;

View File

@@ -1,6 +1,11 @@
package com.tencent.supersonic.semantic.query.parser.calcite.sql.node;
import com.tencent.supersonic.semantic.query.parser.calcite.dsl.Identify;
import com.tencent.supersonic.semantic.query.parser.calcite.dsl.Identify.Type;
import java.util.List;
import java.util.Optional;
import java.util.Set;
import java.util.stream.Collectors;
import org.apache.calcite.sql.SqlNode;
import org.apache.calcite.sql.validate.SqlValidatorScope;
@@ -9,4 +14,28 @@ public class IdentifyNode extends SemanticNode {
public static SqlNode build(Identify identify, SqlValidatorScope scope) throws Exception {
return parse(identify.getName(), scope);
}
public static Set<String> getIdentifyNames(List<Identify> identifies, Identify.Type type) {
return identifies.stream().filter(i -> type.name().equalsIgnoreCase(i.getType())).map(i -> i.getName())
.collect(Collectors.toSet());
}
public static boolean isForeign(String name, List<Identify> identifies) {
Optional<Identify> identify = identifies.stream().filter(i -> i.getName().equalsIgnoreCase(name))
.findFirst();
if (identify.isPresent()) {
return Type.FOREIGN.name().equalsIgnoreCase(identify.get().getType());
}
return false;
}
public static boolean isPrimary(String name, List<Identify> identifies) {
Optional<Identify> identify = identifies.stream().filter(i -> i.getName().equalsIgnoreCase(name))
.findFirst();
if (identify.isPresent()) {
return Type.PRIMARY.name().equalsIgnoreCase(identify.get().getType());
}
return false;
}
}

View File

@@ -5,6 +5,7 @@ import com.tencent.supersonic.semantic.query.parser.calcite.dsl.Constants;
import com.tencent.supersonic.semantic.query.parser.calcite.dsl.DataSource;
import com.tencent.supersonic.semantic.query.parser.calcite.dsl.Dimension;
import com.tencent.supersonic.semantic.query.parser.calcite.dsl.Identify;
import com.tencent.supersonic.semantic.query.parser.calcite.dsl.Identify.Type;
import com.tencent.supersonic.semantic.query.parser.calcite.dsl.Metric;
import com.tencent.supersonic.semantic.query.parser.calcite.schema.SemanticSchema;
import com.tencent.supersonic.semantic.query.parser.calcite.sql.Renderer;
@@ -12,15 +13,20 @@ import com.tencent.supersonic.semantic.query.parser.calcite.sql.TableView;
import com.tencent.supersonic.semantic.query.parser.calcite.sql.node.AggFunctionNode;
import com.tencent.supersonic.semantic.query.parser.calcite.sql.node.DataSourceNode;
import com.tencent.supersonic.semantic.query.parser.calcite.sql.node.FilterNode;
import com.tencent.supersonic.semantic.query.parser.calcite.sql.node.IdentifyNode;
import com.tencent.supersonic.semantic.query.parser.calcite.sql.node.MetricNode;
import com.tencent.supersonic.semantic.query.parser.calcite.sql.node.SemanticNode;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Optional;
import java.util.Queue;
import java.util.Set;
import java.util.stream.Collectors;
import lombok.extern.slf4j.Slf4j;
@@ -33,6 +39,7 @@ import org.apache.calcite.sql.SqlNode;
import org.apache.calcite.sql.fun.SqlStdOperatorTable;
import org.apache.calcite.sql.parser.SqlParserPos;
import org.apache.calcite.sql.validate.SqlValidatorScope;
import org.springframework.util.CollectionUtils;
@Slf4j
public class JoinRender extends Renderer {
@@ -41,6 +48,7 @@ public class JoinRender extends Renderer {
public void render(MetricReq metricCommand, List<DataSource> dataSources, SqlValidatorScope scope,
SemanticSchema schema, boolean nonAgg) throws Exception {
String queryWhere = metricCommand.getWhere();
dataSources = getOrderSource(dataSources);
Set<String> whereFields = new HashSet<>();
List<String> fieldWhere = new ArrayList<>();
if (queryWhere != null && !queryWhere.isEmpty()) {
@@ -95,6 +103,7 @@ public class JoinRender extends Renderer {
String alias = Constants.JOIN_TABLE_PREFIX + dataSource.getName();
tableView.setAlias(alias);
tableView.setPrimary(primary);
tableView.setDataSource(dataSource);
if (left == null) {
leftTable = tableView;
left = SemanticNode.buildAs(tableView.getAlias(), getTable(tableView, scope));
@@ -246,7 +255,7 @@ public class JoinRender extends Renderer {
private SqlNode getCondition(TableView left, TableView right, DataSource dataSource, SemanticSchema schema,
SqlValidatorScope scope) throws Exception {
log.info(left.getClass().toString());
Set<String> selectLeft = SemanticNode.getSelect(left.getTable());
Set<String> selectRight = SemanticNode.getSelect(right.getTable());
selectLeft.retainAll(selectRight);
@@ -255,6 +264,16 @@ public class JoinRender extends Renderer {
if (!SourceRender.isDimension(on, dataSource, schema)) {
continue;
}
if (IdentifyNode.isForeign(on, left.getDataSource().getIdentifiers())) {
if (!IdentifyNode.isPrimary(on, right.getDataSource().getIdentifiers())) {
continue;
}
}
if (IdentifyNode.isForeign(on, right.getDataSource().getIdentifiers())) {
if (!IdentifyNode.isPrimary(on, left.getDataSource().getIdentifiers())) {
continue;
}
}
List<SqlNode> ons = new ArrayList<>();
ons.add(SemanticNode.parse(left.getAlias() + "." + on, scope));
ons.add(SemanticNode.parse(right.getAlias() + "." + on, scope));
@@ -276,4 +295,85 @@ public class JoinRender extends Renderer {
}
return condition;
}
private List<DataSource> getOrderSource(List<DataSource> dataSources) throws Exception {
if (CollectionUtils.isEmpty(dataSources) || dataSources.size() <= 2) {
return dataSources;
}
Map<String, Set<String>> next = new HashMap<>();
Map<String, Boolean> visited = new HashMap<>();
Map<String, List<Identify>> dataSourceIdentifies = new HashMap<>();
dataSources.stream().forEach(d -> {
next.put(d.getName(), new HashSet<>());
visited.put(d.getName(), false);
dataSourceIdentifies.put(d.getName(), d.getIdentifiers());
});
int cnt = dataSources.size();
List<Map.Entry<String, List<Identify>>> dataSourceIdentifyList = dataSourceIdentifies.entrySet().stream()
.collect(
Collectors.toList());
for (int i = 0; i < cnt; i++) {
for (int j = i + 1; j < cnt; j++) {
Set<String> primaries = IdentifyNode.getIdentifyNames(dataSourceIdentifyList.get(i).getValue(),
Type.PRIMARY);
Set<String> foreign = IdentifyNode.getIdentifyNames(dataSourceIdentifyList.get(i).getValue(),
Type.FOREIGN);
Set<String> nextPrimaries = IdentifyNode.getIdentifyNames(dataSourceIdentifyList.get(j).getValue(),
Type.PRIMARY);
Set<String> nextForeign = IdentifyNode.getIdentifyNames(dataSourceIdentifyList.get(j).getValue(),
Type.FOREIGN);
Set<String> nextAll = new HashSet<>();
nextAll.addAll(nextPrimaries);
nextAll.addAll(nextForeign);
primaries.retainAll(nextPrimaries);
foreign.retainAll(nextPrimaries);
if (primaries.size() > 0 || foreign.size() > 0) {
next.get(dataSourceIdentifyList.get(i).getKey()).add(dataSourceIdentifyList.get(j).getKey());
next.get(dataSourceIdentifyList.get(j).getKey()).add(dataSourceIdentifyList.get(i).getKey());
}
}
}
Queue<String> paths = new ArrayDeque<>();
for (String id : visited.keySet()) {
if (!visited.get(id)) {
joinOrder(cnt, id, next, paths, visited);
if (paths.size() >= cnt) {
break;
}
}
}
if (paths.size() < cnt) {
throw new Exception("datasource cant join,pls check identify :" + dataSources.stream()
.map(d -> d.getName()).collect(
Collectors.joining(",")));
}
List<String> orderList = new ArrayList<>(paths);
Collections.sort(dataSources, new Comparator<DataSource>() {
@Override
public int compare(DataSource o1, DataSource o2) {
return orderList.indexOf(o1.getName()) - orderList.indexOf(o2.getName());
}
});
return dataSources;
}
private static void joinOrder(int cnt, String id, Map<String, Set<String>> next, Queue<String> orders,
Map<String, Boolean> visited) {
visited.put(id, true);
orders.add(id);
if (orders.size() >= cnt) {
return;
}
for (String nextId : next.get(id)) {
if (!visited.get(nextId)) {
joinOrder(cnt, nextId, next, orders, visited);
if (orders.size() >= cnt) {
return;
}
}
}
orders.poll();
visited.put(id, false);
}
}

View File

@@ -0,0 +1,258 @@
package com.tencent.supersonic.semantic.query.service;
import com.fasterxml.jackson.core.type.TypeReference;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.tencent.supersonic.auth.api.authentication.pojo.User;
import com.tencent.supersonic.auth.api.authorization.pojo.AuthRes;
import com.tencent.supersonic.auth.api.authorization.pojo.AuthResGrp;
import com.tencent.supersonic.auth.api.authorization.pojo.DimensionFilter;
import com.tencent.supersonic.auth.api.authorization.request.QueryAuthResReq;
import com.tencent.supersonic.auth.api.authorization.response.AuthorizedResourceResp;
import com.tencent.supersonic.auth.api.authorization.service.AuthService;
import com.tencent.supersonic.common.pojo.Constants;
import com.tencent.supersonic.common.pojo.QueryAuthorization;
import com.tencent.supersonic.common.pojo.QueryColumn;
import com.tencent.supersonic.common.pojo.enums.AuthType;
import com.tencent.supersonic.common.pojo.exception.InvalidPermissionException;
import com.tencent.supersonic.semantic.api.model.pojo.SchemaItem;
import com.tencent.supersonic.semantic.api.model.response.DimensionResp;
import com.tencent.supersonic.semantic.api.model.response.MetricResp;
import com.tencent.supersonic.semantic.api.model.response.ModelResp;
import com.tencent.supersonic.semantic.api.model.response.QueryResultWithSchemaResp;
import com.tencent.supersonic.semantic.model.domain.DimensionService;
import com.tencent.supersonic.semantic.model.domain.MetricService;
import com.tencent.supersonic.semantic.model.domain.ModelService;
import lombok.extern.slf4j.Slf4j;
import org.assertj.core.util.Sets;
import org.springframework.beans.BeanUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
import org.springframework.util.CollectionUtils;
import java.text.SimpleDateFormat;
import java.util.List;
import java.util.ArrayList;
import java.util.Map;
import java.util.HashMap;
import java.util.Set;
import java.util.HashSet;
import java.util.stream.Collectors;
@Service
@Slf4j
public class AuthCommonService {
private static final ObjectMapper MAPPER = new ObjectMapper().setDateFormat(
new SimpleDateFormat(Constants.DAY_FORMAT));
@Autowired
private AuthService authService;
@Autowired
private DimensionService dimensionService;
@Autowired
private MetricService metricService;
@Autowired
private ModelService modelService;
public boolean doModelAdmin(User user, Long modelId) {
List<ModelResp> modelListAdmin = modelService.getModelListWithAuth(user, null, AuthType.ADMIN);
if (CollectionUtils.isEmpty(modelListAdmin)) {
return false;
} else {
Map<Long, List<ModelResp>> id2modelResp = modelListAdmin.stream()
.collect(Collectors.groupingBy(SchemaItem::getId));
return !CollectionUtils.isEmpty(id2modelResp) && id2modelResp.containsKey(modelId);
}
}
public void doModelVisible(User user, Long modelId) {
Boolean visible = true;
List<ModelResp> modelListVisible = modelService.getModelListWithAuth(user, null, AuthType.VISIBLE);
if (CollectionUtils.isEmpty(modelListVisible)) {
visible = false;
} else {
Map<Long, List<ModelResp>> id2domainDesc = modelListVisible.stream()
.collect(Collectors.groupingBy(SchemaItem::getId));
if (!CollectionUtils.isEmpty(id2domainDesc) && !id2domainDesc.containsKey(modelId)) {
visible = false;
}
}
if (!visible) {
ModelResp modelResp = modelService.getModel(modelId);
String modelName = modelResp.getName();
List<String> admins = modelService.getModelAdmin(modelResp.getId());
String message = String.format("您没有主题域[%s]权限,请联系管理员%s开通", modelName, admins);
throw new InvalidPermissionException(message);
}
}
public Set<String> getHighSensitiveColsByModelId(Long modelId) {
Set<String> highSensitiveCols = new HashSet<>();
List<DimensionResp> highSensitiveDimensions = dimensionService.getHighSensitiveDimension(modelId);
List<MetricResp> highSensitiveMetrics = metricService.getHighSensitiveMetric(modelId);
if (!CollectionUtils.isEmpty(highSensitiveDimensions)) {
highSensitiveDimensions.stream().forEach(dim -> highSensitiveCols.add(dim.getBizName()));
}
if (!CollectionUtils.isEmpty(highSensitiveMetrics)) {
highSensitiveMetrics.stream().forEach(metric -> highSensitiveCols.add(metric.getBizName()));
}
return highSensitiveCols;
}
public AuthorizedResourceResp getAuthorizedResource(User user, Long domainId,
Set<String> sensitiveResReq) {
List<AuthRes> resourceReqList = new ArrayList<>();
sensitiveResReq.forEach(res -> resourceReqList.add(new AuthRes(domainId.toString(), res)));
QueryAuthResReq queryAuthResReq = new QueryAuthResReq();
queryAuthResReq.setResources(resourceReqList);
queryAuthResReq.setModelId(domainId + "");
AuthorizedResourceResp authorizedResource = fetchAuthRes(queryAuthResReq, user);
log.info("user:{}, domainId:{}, after queryAuthorizedResources:{}", user.getName(), domainId,
authorizedResource);
return authorizedResource;
}
private AuthorizedResourceResp fetchAuthRes(QueryAuthResReq queryAuthResReq, User user) {
log.info("queryAuthResReq:{}", queryAuthResReq);
return authService.queryAuthorizedResources(queryAuthResReq, user);
}
public Set<String> getAuthResNameSet(AuthorizedResourceResp authorizedResource, Long domainId) {
Set<String> resAuthName = new HashSet<>();
List<AuthResGrp> authResGrpList = authorizedResource.getResources();
authResGrpList.stream().forEach(authResGrp -> {
List<AuthRes> cols = authResGrp.getGroup();
if (!CollectionUtils.isEmpty(cols)) {
cols.stream().filter(col -> domainId.equals(Long.parseLong(col.getModelId())))
.forEach(col -> resAuthName.add(col.getName()));
}
});
log.info("resAuthName:{}", resAuthName);
return resAuthName;
}
public boolean allSensitiveResReqIsOk(Set<String> sensitiveResReq, Set<String> resAuthSet) {
if (resAuthSet.containsAll(sensitiveResReq)) {
return true;
}
log.info("sensitiveResReq:{}, resAuthSet:{}", sensitiveResReq, resAuthSet);
return false;
}
public QueryResultWithSchemaResp getQueryResultWithColumns(QueryResultWithSchemaResp resultWithColumns,
Long domainId, AuthorizedResourceResp authResource) {
addPromptInfoInfo(domainId, resultWithColumns, authResource, Sets.newHashSet());
return resultWithColumns;
}
public QueryResultWithSchemaResp desensitizationData(QueryResultWithSchemaResp raw, Set<String> need2Apply) {
log.debug("start desensitizationData logic");
if (CollectionUtils.isEmpty(need2Apply)) {
log.info("user has all sensitiveRes");
return raw;
}
List<QueryColumn> columns = raw.getColumns();
boolean doDesensitization = false;
for (QueryColumn queryColumn : columns) {
if (need2Apply.contains(queryColumn.getNameEn())) {
doDesensitization = true;
break;
}
}
if (!doDesensitization) {
return raw;
}
QueryResultWithSchemaResp queryResultWithColumns = raw;
try {
queryResultWithColumns = deepCopyResult(raw);
} catch (Exception e) {
log.warn("deepCopyResult: ", e);
}
addAuthorizedSchemaInfo(queryResultWithColumns.getColumns(), need2Apply);
desensitizationInternal(queryResultWithColumns.getResultList(), need2Apply);
return queryResultWithColumns;
}
private void addAuthorizedSchemaInfo(List<QueryColumn> columns, Set<String> need2Apply) {
if (CollectionUtils.isEmpty(need2Apply)) {
return;
}
columns.stream().forEach(col -> {
if (need2Apply.contains(col.getNameEn())) {
col.setAuthorized(false);
}
});
}
private void desensitizationInternal(List<Map<String, Object>> result, Set<String> need2Apply) {
log.info("start desensitizationInternal logic");
for (int i = 0; i < result.size(); i++) {
Map<String, Object> row = result.get(i);
Map<String, Object> newRow = new HashMap<>();
for (String col : row.keySet()) {
if (need2Apply.contains(col)) {
newRow.put(col, "****");
} else {
newRow.put(col, row.get(col));
}
}
result.set(i, newRow);
}
}
private QueryResultWithSchemaResp deepCopyResult(QueryResultWithSchemaResp raw) throws Exception {
QueryResultWithSchemaResp queryResultWithColumns = new QueryResultWithSchemaResp();
BeanUtils.copyProperties(raw, queryResultWithColumns);
List<QueryColumn> columns = new ArrayList<>();
if (!CollectionUtils.isEmpty(raw.getColumns())) {
String columnsStr = MAPPER.writeValueAsString(raw.getColumns());
columns = MAPPER.readValue(columnsStr, new TypeReference<List<QueryColumn>>() {
});
queryResultWithColumns.setColumns(columns);
}
queryResultWithColumns.setColumns(columns);
List<Map<String, Object>> resultData = new ArrayList<>();
if (!CollectionUtils.isEmpty(raw.getResultList())) {
for (Map<String, Object> line : raw.getResultList()) {
Map<String, Object> newLine = new HashMap<>();
newLine.putAll(line);
resultData.add(newLine);
}
}
queryResultWithColumns.setResultList(resultData);
return queryResultWithColumns;
}
public void addPromptInfoInfo(Long modelId, QueryResultWithSchemaResp queryResultWithColumns,
AuthorizedResourceResp authorizedResource, Set<String> need2Apply) {
List<DimensionFilter> filters = authorizedResource.getFilters();
if (CollectionUtils.isEmpty(need2Apply) && CollectionUtils.isEmpty(filters)) {
return;
}
List<String> admins = modelService.getModelAdmin(modelId);
if (!CollectionUtils.isEmpty(need2Apply)) {
String promptInfo = String.format("当前结果已经过脱敏处理, 申请权限请联系管理员%s", admins);
queryResultWithColumns.setQueryAuthorization(new QueryAuthorization(promptInfo));
}
if (!CollectionUtils.isEmpty(filters)) {
log.debug("dimensionFilters:{}", filters);
ModelResp modelResp = modelService.getModel(modelId);
List<String> exprList = new ArrayList<>();
List<String> descList = new ArrayList<>();
filters.stream().forEach(filter -> {
descList.add(filter.getDescription());
exprList.add(filter.getExpressions().toString());
});
String promptInfo = "当前结果已经过行权限过滤,详细过滤条件如下:%s, 申请权限请联系管理员%s";
String message = String.format(promptInfo, CollectionUtils.isEmpty(descList) ? exprList : descList, admins);
queryResultWithColumns.setQueryAuthorization(
new QueryAuthorization(modelResp.getName(), exprList, descList, message));
log.info("queryResultWithColumns:{}", queryResultWithColumns);
}
}
}

View File

@@ -21,6 +21,7 @@ import com.tencent.supersonic.semantic.api.query.request.QueryDslReq;
import com.tencent.supersonic.semantic.api.query.request.QueryMultiStructReq;
import com.tencent.supersonic.semantic.api.query.request.QueryStructReq;
import com.tencent.supersonic.semantic.api.query.response.ItemUseResp;
import com.tencent.supersonic.semantic.query.utils.DslPermissionAnnotation;
import com.tencent.supersonic.semantic.query.executor.QueryExecutor;
import com.tencent.supersonic.semantic.query.parser.convert.QueryReqConverter;
import com.tencent.supersonic.semantic.query.persistence.pojo.QueryStatement;
@@ -66,9 +67,16 @@ public class QueryServiceImpl implements QueryService {
}
@Override
public Object queryBySql(QueryDslReq querySqlCmd, User user) throws Exception {
@DslPermissionAnnotation
@SneakyThrows
public Object queryBySql(QueryDslReq querySqlCmd, User user) {
statUtils.initStatInfo(querySqlCmd, user);
QueryStatement queryStatement = convertToQueryStatement(querySqlCmd, user);
QueryStatement queryStatement = new QueryStatement();
try {
queryStatement = convertToQueryStatement(querySqlCmd, user);
} catch (Exception e) {
log.info("convertToQueryStatement has a exception:{}", e.toString());
}
QueryResultWithSchemaResp results = semanticQueryEngine.execute(queryStatement);
statUtils.statInfo2DbAsync(TaskStatusEnum.SUCCESS);
return results;

Some files were not shown because too many files have changed in this diff Show More