mirror of
https://github.com/tencentmusic/supersonic.git
synced 2025-12-11 12:07:42 +00:00
(chore)(sytle) Apply Python styling by black via spotless maven plugin (#113)
* introduce spotless maven plugin with Python black for styling
This commit is contained in:
@@ -1,348 +1,371 @@
|
|||||||
examplars= [
|
examplars = [
|
||||||
{ "current_date":"2020-12-01",
|
{
|
||||||
"table_name":"内容库产品",
|
"current_date": "2020-12-01",
|
||||||
"fields_list":"""["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
|
"table_name": "内容库产品",
|
||||||
"question":"比较jackjchen和robinlee在内容库的访问次数",
|
"fields_list": """["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
|
||||||
"prior_schema_links":"""['jackjchen'->用户名, 'robinlee'->用户名]""",
|
"question": "比较jackjchen和robinlee在内容库的访问次数",
|
||||||
|
"prior_schema_links": """['jackjchen'->用户名, 'robinlee'->用户名]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“比较jackjchen和robinlee在内容库的访问次数“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“比较jackjchen和robinlee在内容库的访问次数“中,我们被问:
|
||||||
“比较jackjchen和robinlee”,所以我们需要column=[用户名]
|
“比较jackjchen和robinlee”,所以我们需要column=[用户名]
|
||||||
”内容库的访问次数“,所以我们需要column=[访问次数]
|
”内容库的访问次数“,所以我们需要column=[访问次数]
|
||||||
基于table和columns,可能的cell values 是 = ['jackjchen', 'robinlee']。""",
|
基于table和columns,可能的cell values 是 = ['jackjchen', 'robinlee']。""",
|
||||||
"schema_links":"""["用户名", "访问次数", "'jackjchen'", "'robinlee'"]""",
|
"schema_links": """["用户名", "访问次数", "'jackjchen'", "'robinlee'"]""",
|
||||||
"sql":"""select 用户名, 访问次数 from 内容库产品 where 用户名 in ('jackjchen', 'robinlee') and 数据日期 = '2020-12-01' """
|
"sql": """select 用户名, 访问次数 from 内容库产品 where 用户名 in ('jackjchen', 'robinlee') and 数据日期 = '2020-12-01' """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2022-11-06",
|
{
|
||||||
"table_name":"内容库产品",
|
"current_date": "2022-11-06",
|
||||||
"fields_list":"""["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
|
"table_name": "内容库产品",
|
||||||
"question":"内容库近12个月访问人数 按部门",
|
"fields_list": """["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
|
||||||
"prior_schema_links":"""[]""",
|
"question": "内容库近12个月访问人数 按部门",
|
||||||
|
"prior_schema_links": """[]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“内容库近12个月访问人数 按部门“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“内容库近12个月访问人数 按部门“中,我们被问:
|
||||||
”内容库近12个月“,所以我们需要column=[数据日期]
|
”内容库近12个月“,所以我们需要column=[数据日期]
|
||||||
“访问人数”,所以我们需要column=[访问人数]
|
“访问人数”,所以我们需要column=[访问人数]
|
||||||
”按部门“,所以我们需要column=[部门]
|
”按部门“,所以我们需要column=[部门]
|
||||||
基于table和columns,可能的cell values 是 = [12]。""",
|
基于table和columns,可能的cell values 是 = [12]。""",
|
||||||
"schema_links":"""["访问人数", "部门", "数据日期", 12]""",
|
"schema_links": """["访问人数", "部门", "数据日期", 12]""",
|
||||||
"sql":"""select 部门, 数据日期, 访问人数 from 内容库产品 where datediff('month', 数据日期, '2022-11-06') <= 12 """
|
"sql": """select 部门, 数据日期, 访问人数 from 内容库产品 where datediff('month', 数据日期, '2022-11-06') <= 12 """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-04-21",
|
{
|
||||||
"table_name":"内容库产品",
|
"current_date": "2023-04-21",
|
||||||
"fields_list":"""["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
|
"table_name": "内容库产品",
|
||||||
"question":"内容库美术部、技术研发部的访问时长",
|
"fields_list": """["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
|
||||||
"prior_schema_links":"""['美术部'->部门, '技术研发部'->部门]""",
|
"question": "内容库美术部、技术研发部的访问时长",
|
||||||
|
"prior_schema_links": """['美术部'->部门, '技术研发部'->部门]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“内容库美术部、技术研发部的访问时长“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“内容库美术部、技术研发部的访问时长“中,我们被问:
|
||||||
“访问时长”,所以我们需要column=[访问时长]
|
“访问时长”,所以我们需要column=[访问时长]
|
||||||
”内容库美术部、技术研发部“,所以我们需要column=[部门]
|
”内容库美术部、技术研发部“,所以我们需要column=[部门]
|
||||||
基于table和columns,可能的cell values 是 = ['美术部', '技术研发部']。""",
|
基于table和columns,可能的cell values 是 = ['美术部', '技术研发部']。""",
|
||||||
"schema_links":"""["访问时长", "部门", "'美术部'", "'技术研发部'"]""",
|
"schema_links": """["访问时长", "部门", "'美术部'", "'技术研发部'"]""",
|
||||||
"sql":"""select 部门, 访问时长 from 内容库产品 where 部门 in ('美术部', '技术研发部') and 数据日期 = '2023-04-21' """
|
"sql": """select 部门, 访问时长 from 内容库产品 where 部门 in ('美术部', '技术研发部') and 数据日期 = '2023-04-21' """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-08-21",
|
{
|
||||||
"table_name":"严选",
|
"current_date": "2023-08-21",
|
||||||
"fields_list":"""["严选版权归属系", "付费模式", "结算播放份额", "付费用户结算播放份额", "数据日期"]""",
|
"table_name": "严选",
|
||||||
"question":"近3天海田飞系MPPM结算播放份额",
|
"fields_list": """["严选版权归属系", "付费模式", "结算播放份额", "付费用户结算播放份额", "数据日期"]""",
|
||||||
"prior_schema_links":"""['海田飞系'->严选版权归属系]""",
|
"question": "近3天海田飞系MPPM结算播放份额",
|
||||||
|
"prior_schema_links": """['海田飞系'->严选版权归属系]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“近3天海田飞系MPPM结算播放份额“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“近3天海田飞系MPPM结算播放份额“中,我们被问:
|
||||||
“MPPM结算播放份额”,所以我们需要column=[结算播放份额]
|
“MPPM结算播放份额”,所以我们需要column=[结算播放份额]
|
||||||
”海田飞系“,所以我们需要column=[严选版权归属系]
|
”海田飞系“,所以我们需要column=[严选版权归属系]
|
||||||
”近3天“,所以我们需要column=[数据日期]
|
”近3天“,所以我们需要column=[数据日期]
|
||||||
基于table和columns,可能的cell values 是 = ['海田飞系', 3]。""",
|
基于table和columns,可能的cell values 是 = ['海田飞系', 3]。""",
|
||||||
"schema_links":"""["结算播放份额", "严选版权归属系", "数据日期", "'海田飞系'", 3]""",
|
"schema_links": """["结算播放份额", "严选版权归属系", "数据日期", "'海田飞系'", 3]""",
|
||||||
"sql":"""select 严选版权归属系, 结算播放份额 from 严选 where 严选版权归属系 = '海田飞系' and datediff('day', 数据日期, '2023-08-21') <= 3 """
|
"sql": """select 严选版权归属系, 结算播放份额 from 严选 where 严选版权归属系 = '海田飞系' and datediff('day', 数据日期, '2023-08-21') <= 3 """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-05-22",
|
{
|
||||||
"table_name":"歌曲库",
|
"current_date": "2023-05-22",
|
||||||
"fields_list":"""["是否潮流人歌曲", "C音歌曲ID", "C音歌曲MID", "歌曲名", "歌曲版本", "语种", "歌曲类型", "翻唱类型", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "结算播放量", "运营播放量", "付费用户结算播放量", "历史累计结算播放量", "运营搜播量", "结算搜播量", "运营完播量", "运营推播量", "近7日复播率", "日均搜播量", "数据日期"]""",
|
"table_name": "歌曲库",
|
||||||
"question":"对比近7天翻唱版和纯音乐的歌曲播放量",
|
"fields_list": """["是否潮流人歌曲", "C音歌曲ID", "C音歌曲MID", "歌曲名", "歌曲版本", "语种", "歌曲类型", "翻唱类型", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "结算播放量", "运营播放量", "付费用户结算播放量", "历史累计结算播放量", "运营搜播量", "结算搜播量", "运营完播量", "运营推播量", "近7日复播率", "日均搜播量", "数据日期"]""",
|
||||||
"prior_schema_links":"""['纯音乐'->语种, '翻唱版'->歌曲版本]""",
|
"question": "对比近7天翻唱版和纯音乐的歌曲播放量",
|
||||||
|
"prior_schema_links": """['纯音乐'->语种, '翻唱版'->歌曲版本]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“对比近3天翻唱版和纯音乐的歌曲播放量“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“对比近3天翻唱版和纯音乐的歌曲播放量“中,我们被问:
|
||||||
“歌曲播放量”,所以我们需要column=[结算播放量]
|
“歌曲播放量”,所以我们需要column=[结算播放量]
|
||||||
”翻唱版“,所以我们需要column=[歌曲版本]
|
”翻唱版“,所以我们需要column=[歌曲版本]
|
||||||
”和纯音乐的歌曲“,所以我们需要column=[语种]
|
”和纯音乐的歌曲“,所以我们需要column=[语种]
|
||||||
”近7天“,所以我们需要column=[数据日期]
|
”近7天“,所以我们需要column=[数据日期]
|
||||||
基于table和columns,可能的cell values 是 = ['翻唱版', '纯音乐', 7]。""",
|
基于table和columns,可能的cell values 是 = ['翻唱版', '纯音乐', 7]。""",
|
||||||
"schema_links":"""["结算播放量", "歌曲版本", "语种", "数据日期", "'翻唱版'", "'纯音乐'", 7]""",
|
"schema_links": """["结算播放量", "歌曲版本", "语种", "数据日期", "'翻唱版'", "'纯音乐'", 7]""",
|
||||||
"sql":"""select 歌曲版本, 语种, 结算播放量 from 歌曲库 where 歌曲版本 = '翻唱版' and 语种 = '纯音乐' and datediff('day', 数据日期, '2023-05-22') <= 7 """
|
"sql": """select 歌曲版本, 语种, 结算播放量 from 歌曲库 where 歌曲版本 = '翻唱版' and 语种 = '纯音乐' and datediff('day', 数据日期, '2023-05-22') <= 7 """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-05-31",
|
{
|
||||||
"table_name":"艺人库",
|
"current_date": "2023-05-31",
|
||||||
"fields_list":"""["上下架状态", "歌手名", "歌手等级", "歌手类型", "歌手来源", "MPPM潮流人等级", "活跃区域", "年龄", "歌手才能", "歌手风格", "粉丝数", "潮音粉丝数", "超声波粉丝数", "推博粉丝数", "超声波歌曲数", "在架歌曲数", "超声波分享数", "独占歌曲数", "超声波在架歌曲评论数", "有播放量歌曲数", "数据日期"]""",
|
"table_name": "艺人库",
|
||||||
"question":"对比一下陈拙悬、孟梅琦、赖媚韵的粉丝数",
|
"fields_list": """["上下架状态", "歌手名", "歌手等级", "歌手类型", "歌手来源", "MPPM潮流人等级", "活跃区域", "年龄", "歌手才能", "歌手风格", "粉丝数", "潮音粉丝数", "超声波粉丝数", "推博粉丝数", "超声波歌曲数", "在架歌曲数", "超声波分享数", "独占歌曲数", "超声波在架歌曲评论数", "有播放量歌曲数", "数据日期"]""",
|
||||||
"prior_schema_links":"""['1527896'->MPPM歌手ID, '1565463'->MPPM歌手ID, '2141459'->MPPM歌手ID]""",
|
"question": "对比一下陈拙悬、孟梅琦、赖媚韵的粉丝数",
|
||||||
|
"prior_schema_links": """['1527896'->MPPM歌手ID, '1565463'->MPPM歌手ID, '2141459'->MPPM歌手ID]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“对比一下陈拙悬、孟梅琦、赖媚韵的粉丝数“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“对比一下陈拙悬、孟梅琦、赖媚韵的粉丝数“中,我们被问:
|
||||||
“粉丝数”,所以我们需要column=[粉丝数]
|
“粉丝数”,所以我们需要column=[粉丝数]
|
||||||
”陈拙悬、孟梅琦、赖媚韵“,所以我们需要column=[歌手名]
|
”陈拙悬、孟梅琦、赖媚韵“,所以我们需要column=[歌手名]
|
||||||
基于table和columns,可能的cell values 是 = ['陈拙悬', '孟梅琦', '赖媚韵']。""",
|
基于table和columns,可能的cell values 是 = ['陈拙悬', '孟梅琦', '赖媚韵']。""",
|
||||||
"schema_links":"""["粉丝数", "歌手名", "'陈拙悬'", "'孟梅琦'", "'赖媚韵'"]""",
|
"schema_links": """["粉丝数", "歌手名", "'陈拙悬'", "'孟梅琦'", "'赖媚韵'"]""",
|
||||||
"sql":"""select 歌手名, 粉丝数 from 艺人库 where 歌手名 in ('陈拙悬', '孟梅琦', '赖媚韵') and 数据日期 = '2023-05-31' """
|
"sql": """select 歌手名, 粉丝数 from 艺人库 where 歌手名 in ('陈拙悬', '孟梅琦', '赖媚韵') and 数据日期 = '2023-05-31' """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-07-31",
|
{
|
||||||
"table_name":"歌曲库",
|
"current_date": "2023-07-31",
|
||||||
"fields_list":"""["歌曲名", "歌曲版本", "歌曲类型", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
"table_name": "歌曲库",
|
||||||
"question":"播放量大于1万的歌曲有多少",
|
"fields_list": """["歌曲名", "歌曲版本", "歌曲类型", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
||||||
"prior_schema_links":"""[]""",
|
"question": "播放量大于1万的歌曲有多少",
|
||||||
|
"prior_schema_links": """[]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“播放量大于1万的歌曲有多少“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“播放量大于1万的歌曲有多少“中,我们被问:
|
||||||
“歌曲有多少”,所以我们需要column=[歌曲名]
|
“歌曲有多少”,所以我们需要column=[歌曲名]
|
||||||
”播放量大于1万的“,所以我们需要column=[结算播放量]
|
”播放量大于1万的“,所以我们需要column=[结算播放量]
|
||||||
基于table和columns,可能的cell values 是 = [10000]。""",
|
基于table和columns,可能的cell values 是 = [10000]。""",
|
||||||
"schema_links":"""["歌曲名", "结算播放量", 10000]""",
|
"schema_links": """["歌曲名", "结算播放量", 10000]""",
|
||||||
"sql":"""select 歌曲名 from 歌曲库 where 结算播放量 > 10000 and 数据日期 = '2023-07-31' """
|
"sql": """select 歌曲名 from 歌曲库 where 结算播放量 > 10000 and 数据日期 = '2023-07-31' """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-07-31",
|
{
|
||||||
"table_name":"内容库产品",
|
"current_date": "2023-07-31",
|
||||||
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
|
"table_name": "内容库产品",
|
||||||
"question":"内容库访问时长小于1小时,且来自美术部的用户是哪些",
|
"fields_list": """["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
|
||||||
"prior_schema_links":"""['美术部'->部门]""",
|
"question": "内容库访问时长小于1小时,且来自美术部的用户是哪些",
|
||||||
|
"prior_schema_links": """['美术部'->部门]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“内容库访问时长小于1小时,且来自美术部的用户是哪些“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“内容库访问时长小于1小时,且来自美术部的用户是哪些“中,我们被问:
|
||||||
“用户是哪些”,所以我们需要column=[用户名]
|
“用户是哪些”,所以我们需要column=[用户名]
|
||||||
”美术部的“,所以我们需要column=[部门]
|
”美术部的“,所以我们需要column=[部门]
|
||||||
”访问时长小于1小时“,所以我们需要column=[访问时长]
|
”访问时长小于1小时“,所以我们需要column=[访问时长]
|
||||||
基于table和columns,可能的cell values 是 = ['美术部', 1]。""",
|
基于table和columns,可能的cell values 是 = ['美术部', 1]。""",
|
||||||
"schema_links":"""["用户名", "部门", "访问时长", "'美术部'", 1]""",
|
"schema_links": """["用户名", "部门", "访问时长", "'美术部'", 1]""",
|
||||||
"sql":"""select 用户名 from 内容库产品 where 部门 = '美术部' and 访问时长 < 1 and 数据日期 = '2023-07-31' """
|
"sql": """select 用户名 from 内容库产品 where 部门 = '美术部' and 访问时长 < 1 and 数据日期 = '2023-07-31' """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-08-31",
|
{
|
||||||
"table_name":"内容库产品",
|
"current_date": "2023-08-31",
|
||||||
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
|
"table_name": "内容库产品",
|
||||||
"question":"内容库pv最高的用户有哪些",
|
"fields_list": """["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
|
||||||
"prior_schema_links":"""[]""",
|
"question": "内容库pv最高的用户有哪些",
|
||||||
|
"prior_schema_links": """[]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“内容库pv最高的用户有哪些“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“内容库pv最高的用户有哪些“中,我们被问:
|
||||||
“用户有哪些”,所以我们需要column=[用户名]
|
“用户有哪些”,所以我们需要column=[用户名]
|
||||||
”pv最高的“,所以我们需要column=[访问次数]
|
”pv最高的“,所以我们需要column=[访问次数]
|
||||||
基于table和columns,可能的cell values 是 = []。""",
|
基于table和columns,可能的cell values 是 = []。""",
|
||||||
"schema_links":"""["用户名", "访问次数"]""",
|
"schema_links": """["用户名", "访问次数"]""",
|
||||||
"sql":"""select 用户名 from 内容库产品 where 数据日期 = '2023-08-31' order by 访问次数 desc limit 10 """
|
"sql": """select 用户名 from 内容库产品 where 数据日期 = '2023-08-31' order by 访问次数 desc limit 10 """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-08-31",
|
{
|
||||||
"table_name":"艺人库",
|
"current_date": "2023-08-31",
|
||||||
"fields_list":"""["播放量层级", "播放量单调性", "播放量方差", "播放量突增类型", "播放量集中度", "歌手名", "歌手等级", "歌手类型", "歌手来源", "MPPM潮流人等级", "结算播放量", "运营播放量", "历史累计结算播放量", "有播放量歌曲数", "历史累计运营播放量", "付费用户结算播放量", "结算播放量占比", "运营播放份额", "免费用户结算播放占比", "完播量", "数据日期"]""",
|
"table_name": "艺人库",
|
||||||
"question":"近90天袁亚伟播放量平均值是多少",
|
"fields_list": """["播放量层级", "播放量单调性", "播放量方差", "播放量突增类型", "播放量集中度", "歌手名", "歌手等级", "歌手类型", "歌手来源", "MPPM潮流人等级", "结算播放量", "运营播放量", "历史累计结算播放量", "有播放量歌曲数", "历史累计运营播放量", "付费用户结算播放量", "结算播放量占比", "运营播放份额", "免费用户结算播放占比", "完播量", "数据日期"]""",
|
||||||
"prior_schema_links":"""['152789226'->MPPM歌手ID]""",
|
"question": "近90天袁亚伟播放量平均值是多少",
|
||||||
|
"prior_schema_links": """['152789226'->MPPM歌手ID]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“近90天袁亚伟播放量平均值是多少“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“近90天袁亚伟播放量平均值是多少“中,我们被问:
|
||||||
“播放量平均值是多少”,所以我们需要column=[结算播放量]
|
“播放量平均值是多少”,所以我们需要column=[结算播放量]
|
||||||
”袁亚伟“,所以我们需要column=[歌手名]
|
”袁亚伟“,所以我们需要column=[歌手名]
|
||||||
”近90天“,所以我们需要column=[数据日期]
|
”近90天“,所以我们需要column=[数据日期]
|
||||||
基于table和columns,可能的cell values 是 = ['袁亚伟', 90]。""",
|
基于table和columns,可能的cell values 是 = ['袁亚伟', 90]。""",
|
||||||
"schema_links":"""["结算播放量", "歌手名", "数据日期", "'袁亚伟'", 90]""",
|
"schema_links": """["结算播放量", "歌手名", "数据日期", "'袁亚伟'", 90]""",
|
||||||
"sql":"""select avg(结算播放量) from 艺人库 where 歌手名 = '袁亚伟' and datediff('day', 数据日期, '2023-08-31') <= 90 """
|
"sql": """select avg(结算播放量) from 艺人库 where 歌手名 = '袁亚伟' and datediff('day', 数据日期, '2023-08-31') <= 90 """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-08-31",
|
{
|
||||||
"table_name":"艺人库",
|
"current_date": "2023-08-31",
|
||||||
"fields_list":"""["播放量层级", "播放量单调性", "播放量方差", "播放量突增类型", "播放量集中度", "歌手名", "歌手等级", "歌手类型", "歌手来源", "MPPM潮流人等级", "结算播放量", "运营播放量", "历史累计结算播放量", "有播放量歌曲数", "历史累计运营播放量", "付费用户结算播放量", "结算播放量占比", "运营播放份额", "免费用户结算播放占比", "完播量", "数据日期"]""",
|
"table_name": "艺人库",
|
||||||
"question":"周倩倩近7天结算播放量总和是多少",
|
"fields_list": """["播放量层级", "播放量单调性", "播放量方差", "播放量突增类型", "播放量集中度", "歌手名", "歌手等级", "歌手类型", "歌手来源", "MPPM潮流人等级", "结算播放量", "运营播放量", "历史累计结算播放量", "有播放量歌曲数", "历史累计运营播放量", "付费用户结算播放量", "结算播放量占比", "运营播放份额", "免费用户结算播放占比", "完播量", "数据日期"]""",
|
||||||
"prior_schema_links":"""['199509'->MPPM歌手ID]""",
|
"question": "周倩倩近7天结算播放量总和是多少",
|
||||||
|
"prior_schema_links": """['199509'->MPPM歌手ID]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“周倩倩近7天结算播放量总和是多少“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“周倩倩近7天结算播放量总和是多少“中,我们被问:
|
||||||
“结算播放量总和是多少”,所以我们需要column=[结算播放量]
|
“结算播放量总和是多少”,所以我们需要column=[结算播放量]
|
||||||
”周倩倩“,所以我们需要column=[歌手名]
|
”周倩倩“,所以我们需要column=[歌手名]
|
||||||
”近7天“,所以我们需要column=[数据日期]
|
”近7天“,所以我们需要column=[数据日期]
|
||||||
基于table和columns,可能的cell values 是 = ['周倩倩', 7]。""",
|
基于table和columns,可能的cell values 是 = ['周倩倩', 7]。""",
|
||||||
"schema_links":"""["结算播放量", "歌手名", "数据日期", "'周倩倩'", 7]""",
|
"schema_links": """["结算播放量", "歌手名", "数据日期", "'周倩倩'", 7]""",
|
||||||
"sql":"""select sum(结算播放量) from 艺人库 where 歌手名 = '周倩倩' and datediff('day', 数据日期, '2023-08-31') <= 7 """
|
"sql": """select sum(结算播放量) from 艺人库 where 歌手名 = '周倩倩' and datediff('day', 数据日期, '2023-08-31') <= 7 """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-09-14",
|
{
|
||||||
"table_name":"内容库产品",
|
"current_date": "2023-09-14",
|
||||||
"fields_list":"""["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
|
"table_name": "内容库产品",
|
||||||
"question":"内容库访问次数大于1k的部门是哪些",
|
"fields_list": """["部门", "模块", "用户名", "访问次数", "访问人数", "访问时长", "数据日期"]""",
|
||||||
"prior_schema_links":"""[]""",
|
"question": "内容库访问次数大于1k的部门是哪些",
|
||||||
|
"prior_schema_links": """[]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“内容库访问次数大于1k的部门是哪些“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“内容库访问次数大于1k的部门是哪些“中,我们被问:
|
||||||
“部门是哪些”,所以我们需要column=[部门]
|
“部门是哪些”,所以我们需要column=[部门]
|
||||||
”访问次数大于1k的“,所以我们需要column=[访问次数]
|
”访问次数大于1k的“,所以我们需要column=[访问次数]
|
||||||
基于table和columns,可能的cell values 是 = [1000]。""",
|
基于table和columns,可能的cell values 是 = [1000]。""",
|
||||||
"schema_links":"""["部门", "访问次数", 1000]""",
|
"schema_links": """["部门", "访问次数", 1000]""",
|
||||||
"sql":"""select 部门 from 内容库产品 where 访问次数 > 1000 and 数据日期 = '2023-09-14' """
|
"sql": """select 部门 from 内容库产品 where 访问次数 > 1000 and 数据日期 = '2023-09-14' """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-09-18",
|
{
|
||||||
"table_name":"歌曲库",
|
"current_date": "2023-09-18",
|
||||||
"fields_list":"""["歌曲名", "MPPM歌手ID", "歌曲版本", "歌曲类型", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
"table_name": "歌曲库",
|
||||||
"question":"陈亿训唱的所有的播放量大于20k的孤勇者有哪些",
|
"fields_list": """["歌曲名", "MPPM歌手ID", "歌曲版本", "歌曲类型", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
||||||
"prior_schema_links":"""['199509'->MPPM歌手ID, '1527123'->MPPM歌曲ID]""",
|
"question": "陈亿训唱的所有的播放量大于20k的孤勇者有哪些",
|
||||||
|
"prior_schema_links": """['199509'->MPPM歌手ID, '1527123'->MPPM歌曲ID]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“陈亿训唱的所有的播放量大于20k的孤勇者有哪些“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“陈亿训唱的所有的播放量大于20k的孤勇者有哪些“中,我们被问:
|
||||||
“孤勇者有哪些”,所以我们需要column=[歌曲名]
|
“孤勇者有哪些”,所以我们需要column=[歌曲名]
|
||||||
”播放量大于20k的“,所以我们需要column=[结算播放量]
|
”播放量大于20k的“,所以我们需要column=[结算播放量]
|
||||||
”陈亿训唱的“,所以我们需要column=[歌手名]
|
”陈亿训唱的“,所以我们需要column=[歌手名]
|
||||||
基于table和columns,可能的cell values 是 = [20000, '陈亿训', '孤勇者']。""",
|
基于table和columns,可能的cell values 是 = [20000, '陈亿训', '孤勇者']。""",
|
||||||
"schema_links":"""["歌曲名", "结算播放量", "歌手名", 20000, "'陈亿训'", "'孤勇者'"]""",
|
"schema_links": """["歌曲名", "结算播放量", "歌手名", 20000, "'陈亿训'", "'孤勇者'"]""",
|
||||||
"sql":"""select 歌曲名 from 歌曲库 where 结算播放量 > 20000 and 歌手名 = '陈亿训' and 歌曲名 = '孤勇者' and 数据日期 = '2023-09-18' """
|
"sql": """select 歌曲名 from 歌曲库 where 结算播放量 > 20000 and 歌手名 = '陈亿训' and 歌曲名 = '孤勇者' and 数据日期 = '2023-09-18' """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-09-18",
|
{
|
||||||
"table_name":"歌曲库",
|
"current_date": "2023-09-18",
|
||||||
"fields_list":"""["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
"table_name": "歌曲库",
|
||||||
"question":"周洁轮去年发布的歌曲有哪些",
|
"fields_list": """["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
||||||
"prior_schema_links":"""['23109'->MPPM歌手ID]""",
|
"question": "周洁轮去年发布的歌曲有哪些",
|
||||||
|
"prior_schema_links": """['23109'->MPPM歌手ID]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“周洁轮去年发布的歌曲有哪些“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“周洁轮去年发布的歌曲有哪些“中,我们被问:
|
||||||
“歌曲有哪些”,所以我们需要column=[歌曲名]
|
“歌曲有哪些”,所以我们需要column=[歌曲名]
|
||||||
”去年发布的“,所以我们需要column=[发布时间]
|
”去年发布的“,所以我们需要column=[发布时间]
|
||||||
”周洁轮“,所以我们需要column=[歌手名]
|
”周洁轮“,所以我们需要column=[歌手名]
|
||||||
基于table和columns,可能的cell values 是 = ['周洁轮', 1]。""",
|
基于table和columns,可能的cell values 是 = ['周洁轮', 1]。""",
|
||||||
"schema_links":"""["歌曲名", "发布时间", "歌手名", 1, "'周洁轮'"]""",
|
"schema_links": """["歌曲名", "发布时间", "歌手名", 1, "'周洁轮'"]""",
|
||||||
"sql":"""select 歌曲名 from 歌曲库 where datediff('year', 发布时间, '2023-09-18') <= 1 and 歌手名 = '周洁轮' and 数据日期 = '2023-09-18' """
|
"sql": """select 歌曲名 from 歌曲库 where datediff('year', 发布时间, '2023-09-18') <= 1 and 歌手名 = '周洁轮' and 数据日期 = '2023-09-18' """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-09-11",
|
{
|
||||||
"table_name":"艺人库",
|
"current_date": "2023-09-11",
|
||||||
"fields_list":"""["播放量层级", "播放量单调性", "播放量方差", "播放量突增类型", "播放量集中度", "歌手名", "歌手等级", "歌手类型", "歌手来源", "签约日期", "MPPM潮流人等级", "结算播放量", "运营播放量", "历史累计结算播放量", "有播放量歌曲数", "历史累计运营播放量", "付费用户结算播放量", "结算播放量占比", "运营播放份额", "免费用户结算播放占比", "完播量", "数据日期"]""",
|
"table_name": "艺人库",
|
||||||
"question":"我想要近半年签约的播放量前十的歌手有哪些",
|
"fields_list": """["播放量层级", "播放量单调性", "播放量方差", "播放量突增类型", "播放量集中度", "歌手名", "歌手等级", "歌手类型", "歌手来源", "签约日期", "MPPM潮流人等级", "结算播放量", "运营播放量", "历史累计结算播放量", "有播放量歌曲数", "历史累计运营播放量", "付费用户结算播放量", "结算播放量占比", "运营播放份额", "免费用户结算播放占比", "完播量", "数据日期"]""",
|
||||||
"prior_schema_links":"""[]""",
|
"question": "我想要近半年签约的播放量前十的歌手有哪些",
|
||||||
|
"prior_schema_links": """[]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“我想要近半年签约的播放量前十的歌手“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“我想要近半年签约的播放量前十的歌手“中,我们被问:
|
||||||
“歌手有哪些”,所以我们需要column=[歌手名]
|
“歌手有哪些”,所以我们需要column=[歌手名]
|
||||||
”播放量前十的“,所以我们需要column=[结算播放量]
|
”播放量前十的“,所以我们需要column=[结算播放量]
|
||||||
”近半年签约的“,所以我们需要column=[签约日期]
|
”近半年签约的“,所以我们需要column=[签约日期]
|
||||||
基于table和columns,可能的cell values 是 = [0.5, 10]。""",
|
基于table和columns,可能的cell values 是 = [0.5, 10]。""",
|
||||||
"schema_links":"""["歌手名", "结算播放量", "签约日期", 0.5, 10]""",
|
"schema_links": """["歌手名", "结算播放量", "签约日期", 0.5, 10]""",
|
||||||
"sql":"""select 歌手名 from 艺人库 where datediff('year', 签约日期, '2023-09-11') <= 0.5 and 数据日期 = '2023-09-11' order by 结算播放量 desc limit 10"""
|
"sql": """select 歌手名 from 艺人库 where datediff('year', 签约日期, '2023-09-11') <= 0.5 and 数据日期 = '2023-09-11' order by 结算播放量 desc limit 10""",
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-08-12",
|
{
|
||||||
"table_name":"歌曲库",
|
"current_date": "2023-08-12",
|
||||||
|
"table_name": "歌曲库",
|
||||||
"fields_list": """["发行日期", "歌曲语言", "歌曲来源", "歌曲流派", "歌曲名", "歌曲版本", "歌曲类型", "发行时间", "数据日期"]""",
|
"fields_list": """["发行日期", "歌曲语言", "歌曲来源", "歌曲流派", "歌曲名", "歌曲版本", "歌曲类型", "发行时间", "数据日期"]""",
|
||||||
"question":"最近一年发行的歌曲中,有哪些在近7天播放超过一千万的",
|
"question": "最近一年发行的歌曲中,有哪些在近7天播放超过一千万的",
|
||||||
"prior_schema_links":"""[]""",
|
"prior_schema_links": """[]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“最近一年发行的歌曲中,有哪些在近7天播放超过一千万的“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“最近一年发行的歌曲中,有哪些在近7天播放超过一千万的“中,我们被问:
|
||||||
“发行的歌曲中,有哪些”,所以我们需要column=[歌曲名]
|
“发行的歌曲中,有哪些”,所以我们需要column=[歌曲名]
|
||||||
”最近一年发行的“,所以我们需要column=[发行日期]
|
”最近一年发行的“,所以我们需要column=[发行日期]
|
||||||
”在近7天播放超过一千万的“,所以我们需要column=[数据日期, 结算播放量]
|
”在近7天播放超过一千万的“,所以我们需要column=[数据日期, 结算播放量]
|
||||||
基于table和columns,可能的cell values 是 = [1, 10000000]""",
|
基于table和columns,可能的cell values 是 = [1, 10000000]""",
|
||||||
"schema_links":"""["歌曲名", "发行日期", "数据日期", "结算播放量", 1, 10000000]""",
|
"schema_links": """["歌曲名", "发行日期", "数据日期", "结算播放量", 1, 10000000]""",
|
||||||
"sql":"""select 歌曲名 from 歌曲库 where datediff('year', 发行日期, '2023-08-12') <= 1 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000"""
|
"sql": """select 歌曲名 from 歌曲库 where datediff('year', 发行日期, '2023-08-12') <= 1 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000""",
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-08-12",
|
{
|
||||||
"table_name":"歌曲库",
|
"current_date": "2023-08-12",
|
||||||
|
"table_name": "歌曲库",
|
||||||
"fields_list": """["发行日期", "歌曲语言", "歌曲来源", "歌曲流派", "歌曲名", "歌曲版本", "歌曲类型", "发行时间", "数据日期"]""",
|
"fields_list": """["发行日期", "歌曲语言", "歌曲来源", "歌曲流派", "歌曲名", "歌曲版本", "歌曲类型", "发行时间", "数据日期"]""",
|
||||||
"question":"今年以来发行的歌曲中,有哪些在近7天播放超过一千万的",
|
"question": "今年以来发行的歌曲中,有哪些在近7天播放超过一千万的",
|
||||||
"prior_schema_links":"""[]""",
|
"prior_schema_links": """[]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“今年以来发行的歌曲中,有哪些在近7天播放超过一千万的“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“今年以来发行的歌曲中,有哪些在近7天播放超过一千万的“中,我们被问:
|
||||||
“发行的歌曲中,有哪些”,所以我们需要column=[歌曲名]
|
“发行的歌曲中,有哪些”,所以我们需要column=[歌曲名]
|
||||||
”今年以来发行的“,所以我们需要column=[发行日期]
|
”今年以来发行的“,所以我们需要column=[发行日期]
|
||||||
”在近7天播放超过一千万的“,所以我们需要column=[数据日期, 结算播放量]
|
”在近7天播放超过一千万的“,所以我们需要column=[数据日期, 结算播放量]
|
||||||
基于table和columns,可能的cell values 是 = [0, 7, 10000000]""",
|
基于table和columns,可能的cell values 是 = [0, 7, 10000000]""",
|
||||||
"schema_links":"""["歌曲名", "发行日期", "数据日期", "结算播放量", 0, 7, 10000000]""",
|
"schema_links": """["歌曲名", "发行日期", "数据日期", "结算播放量", 0, 7, 10000000]""",
|
||||||
"sql":"""select 歌曲名 from 歌曲库 where datediff('year', 发行日期, '2023-08-12') <= 0 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000"""
|
"sql": """select 歌曲名 from 歌曲库 where datediff('year', 发行日期, '2023-08-12') <= 0 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000""",
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-08-12",
|
{
|
||||||
"table_name":"歌曲库",
|
"current_date": "2023-08-12",
|
||||||
|
"table_name": "歌曲库",
|
||||||
"fields_list": """["发行日期", "歌曲语言", "歌曲来源", "歌曲流派", "歌曲名", "歌曲版本", "歌曲类型", "发行时间", "数据日期"]""",
|
"fields_list": """["发行日期", "歌曲语言", "歌曲来源", "歌曲流派", "歌曲名", "歌曲版本", "歌曲类型", "发行时间", "数据日期"]""",
|
||||||
"question":"2023年以来发行的歌曲中,有哪些在近7天播放超过一千万的",
|
"question": "2023年以来发行的歌曲中,有哪些在近7天播放超过一千万的",
|
||||||
"prior_schema_links":"""['514129144'->MPPM歌曲ID]""",
|
"prior_schema_links": """['514129144'->MPPM歌曲ID]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“2023年以来发行的歌曲中,有哪些在近7天播放超过一千万的“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“2023年以来发行的歌曲中,有哪些在近7天播放超过一千万的“中,我们被问:
|
||||||
“发行的歌曲中,有哪些”,所以我们需要column=[歌曲名]
|
“发行的歌曲中,有哪些”,所以我们需要column=[歌曲名]
|
||||||
”2023年以来发行的“,所以我们需要column=[发行日期]
|
”2023年以来发行的“,所以我们需要column=[发行日期]
|
||||||
”在近7天播放超过一千万的“,所以我们需要column=[数据日期, 结算播放量]
|
”在近7天播放超过一千万的“,所以我们需要column=[数据日期, 结算播放量]
|
||||||
基于table和columns,可能的cell values 是 = [2023, 7, 10000000]""",
|
基于table和columns,可能的cell values 是 = [2023, 7, 10000000]""",
|
||||||
"schema_links":"""["歌曲名", "发行日期", "数据日期", "结算播放量", 2023, 7, 10000000]""",
|
"schema_links": """["歌曲名", "发行日期", "数据日期", "结算播放量", 2023, 7, 10000000]""",
|
||||||
"sql":"""select 歌曲名 from 歌曲库 where YEAR(发行日期) >= 2023 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000"""
|
"sql": """select 歌曲名 from 歌曲库 where YEAR(发行日期) >= 2023 and datediff('day', 数据日期, '2023-08-12') <= 7 and 结算播放量 > 10000000""",
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-08-01",
|
{
|
||||||
"table_name":"歌曲库",
|
"current_date": "2023-08-01",
|
||||||
"fields_list":"""["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
"table_name": "歌曲库",
|
||||||
"question":"周洁轮2023年6月之后发布的歌曲有哪些",
|
"fields_list": """["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
||||||
"prior_schema_links":"""['23109'->MPPM歌手ID]""",
|
"question": "周洁轮2023年6月之后发布的歌曲有哪些",
|
||||||
|
"prior_schema_links": """['23109'->MPPM歌手ID]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“周洁轮2023年6月之后发布的歌曲有哪些“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“周洁轮2023年6月之后发布的歌曲有哪些“中,我们被问:
|
||||||
“歌曲有哪些”,所以我们需要column=[歌曲名]
|
“歌曲有哪些”,所以我们需要column=[歌曲名]
|
||||||
”2023年6月之后发布的“,所以我们需要column=[发布时间]
|
”2023年6月之后发布的“,所以我们需要column=[发布时间]
|
||||||
”周洁轮“,所以我们需要column=[歌手名]
|
”周洁轮“,所以我们需要column=[歌手名]
|
||||||
基于table和columns,可能的cell values 是 = ['周洁轮', 2023, 6]。""",
|
基于table和columns,可能的cell values 是 = ['周洁轮', 2023, 6]。""",
|
||||||
"schema_links":"""["歌曲名", "发布时间", "歌手名", "周洁轮", 2023, 6]""",
|
"schema_links": """["歌曲名", "发布时间", "歌手名", "周洁轮", 2023, 6]""",
|
||||||
"sql":"""select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 2023 and MONTH(发布时间) >= 6 and 歌手名 = '周洁轮' and 数据日期 = '2023-08-01' """
|
"sql": """select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 2023 and MONTH(发布时间) >= 6 and 歌手名 = '周洁轮' and 数据日期 = '2023-08-01' """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-08-01",
|
{
|
||||||
"table_name":"歌曲库",
|
"current_date": "2023-08-01",
|
||||||
"fields_list":"""["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
"table_name": "歌曲库",
|
||||||
"question":"邓梓琦在2023年1月5日之后发布的歌曲中,有哪些播放量大于500W的?",
|
"fields_list": """["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
||||||
"prior_schema_links":"""['2312311'->MPPM歌手ID]""",
|
"question": "邓梓琦在2023年1月5日之后发布的歌曲中,有哪些播放量大于500W的?",
|
||||||
|
"prior_schema_links": """['2312311'->MPPM歌手ID]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“邓梓琦在2023年1月5日之后发布的歌曲中,有哪些播放量大于500W的?“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“邓梓琦在2023年1月5日之后发布的歌曲中,有哪些播放量大于500W的?“中,我们被问:
|
||||||
“播放量大于500W的”,所以我们需要column=[结算播放量]
|
“播放量大于500W的”,所以我们需要column=[结算播放量]
|
||||||
”邓梓琦在2023年1月5日之后发布的“,所以我们需要column=[发布时间]
|
”邓梓琦在2023年1月5日之后发布的“,所以我们需要column=[发布时间]
|
||||||
”邓梓琦“,所以我们需要column=[歌手名]
|
”邓梓琦“,所以我们需要column=[歌手名]
|
||||||
基于table和columns,可能的cell values 是 = ['邓梓琦', 2023, 1, 5, 5000000]。""",
|
基于table和columns,可能的cell values 是 = ['邓梓琦', 2023, 1, 5, 5000000]。""",
|
||||||
"schema_links":"""["结算播放量", "发布时间", "歌手名", "邓梓琦", 2023, 1, 5, 5000000]""",
|
"schema_links": """["结算播放量", "发布时间", "歌手名", "邓梓琦", 2023, 1, 5, 5000000]""",
|
||||||
"sql":"""select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 2023 and MONTH(发布时间) >= 1 and DAY(发布时间) >= 5 and 歌手名 = '邓梓琦' and 结算播放量 > 5000000 and 数据日期 = '2023-08-01'"""
|
"sql": """select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 2023 and MONTH(发布时间) >= 1 and DAY(发布时间) >= 5 and 歌手名 = '邓梓琦' and 结算播放量 > 5000000 and 数据日期 = '2023-08-01'""",
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-09-17",
|
{
|
||||||
"table_name":"歌曲库",
|
"current_date": "2023-09-17",
|
||||||
"fields_list":"""["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
"table_name": "歌曲库",
|
||||||
"question":"2023年6月以后,张亮英播放量大于200万的歌曲有哪些?",
|
"fields_list": """["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
||||||
"prior_schema_links":"""['45453'->MPPM歌手ID]""",
|
"question": "2023年6月以后,张亮英播放量大于200万的歌曲有哪些?",
|
||||||
|
"prior_schema_links": """['45453'->MPPM歌手ID]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“2023年6月以后,张亮英播放量大于200万的歌曲有哪些?“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“2023年6月以后,张亮英播放量大于200万的歌曲有哪些?“中,我们被问:
|
||||||
“播放量大于200万的”,所以我们需要column=[结算播放量]
|
“播放量大于200万的”,所以我们需要column=[结算播放量]
|
||||||
”2023年6月以后,张亮英“,所以我们需要column=[数据日期, 歌手名]
|
”2023年6月以后,张亮英“,所以我们需要column=[数据日期, 歌手名]
|
||||||
”歌曲有哪些“,所以我们需要column=[歌曲名]
|
”歌曲有哪些“,所以我们需要column=[歌曲名]
|
||||||
基于table和columns,可能的cell values 是 = ['张亮英', 2023, 6, 2000000]。""",
|
基于table和columns,可能的cell values 是 = ['张亮英', 2023, 6, 2000000]。""",
|
||||||
"schema_links":"""["结算播放量", "数据日期", "歌手名", "张亮英", 2023, 6, 2000000]""",
|
"schema_links": """["结算播放量", "数据日期", "歌手名", "张亮英", 2023, 6, 2000000]""",
|
||||||
"sql":"""select 歌曲名 from 歌曲库 where YEAR(数据日期) >= 2023 and MONTH(数据日期) >= 6 and 歌手名 = '张亮英' and 结算播放量 > 2000000 """
|
"sql": """select 歌曲名 from 歌曲库 where YEAR(数据日期) >= 2023 and MONTH(数据日期) >= 6 and 歌手名 = '张亮英' and 结算播放量 > 2000000 """,
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-08-16",
|
{
|
||||||
"table_name":"歌曲库",
|
"current_date": "2023-08-16",
|
||||||
"fields_list":"""["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
"table_name": "歌曲库",
|
||||||
"question":"2021年6月以后发布的李雨纯的播放量大于20万的歌曲有哪些",
|
"fields_list": """["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
||||||
"prior_schema_links":"""['23109'->MPPM歌手ID]""",
|
"question": "2021年6月以后发布的李雨纯的播放量大于20万的歌曲有哪些",
|
||||||
|
"prior_schema_links": """['23109'->MPPM歌手ID]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“2021年6月以后发布的李雨纯的播放量大于20万的歌曲有哪些“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“2021年6月以后发布的李雨纯的播放量大于20万的歌曲有哪些“中,我们被问:
|
||||||
“播放量大于20万的”,所以我们需要column=[结算播放量]
|
“播放量大于20万的”,所以我们需要column=[结算播放量]
|
||||||
”2021年6月以后发布的“,所以我们需要column=[发布时间]
|
”2021年6月以后发布的“,所以我们需要column=[发布时间]
|
||||||
”李雨纯“,所以我们需要column=[歌手名]
|
”李雨纯“,所以我们需要column=[歌手名]
|
||||||
基于table和columns,可能的cell values 是 = ['李雨纯', 2021, 6, 200000]。""",
|
基于table和columns,可能的cell values 是 = ['李雨纯', 2021, 6, 200000]。""",
|
||||||
"schema_links":"""["结算播放量", "发布时间", "歌手名", "李雨纯", 2021, 6, 200000]""",
|
"schema_links": """["结算播放量", "发布时间", "歌手名", "李雨纯", 2021, 6, 200000]""",
|
||||||
"sql":"""select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 2021 and MONTH(发布时间) >= 6 and 歌手名 = '李雨纯' and 结算播放量 > 200000 and 数据日期 = '2023-08-16'"""
|
"sql": """select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 2021 and MONTH(发布时间) >= 6 and 歌手名 = '李雨纯' and 结算播放量 > 200000 and 数据日期 = '2023-08-16'""",
|
||||||
},
|
},
|
||||||
{ "current_date":"2023-08-16",
|
{
|
||||||
"table_name":"歌曲库",
|
"current_date": "2023-08-16",
|
||||||
"fields_list":"""["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
"table_name": "歌曲库",
|
||||||
"question":"刘锝桦在1992年4月2日到2020年5月2日之间发布的播放量大于20万的歌曲有哪些",
|
"fields_list": """["歌曲名", "歌曲版本", "歌手名", "歌曲类型", "发布时间", "MPPM歌曲ID", "是否严选窄口径歌曲", "是否严选宽口径歌曲", "是否潮流人歌曲", "超声波歌曲ID", "C音歌曲ID", "C音歌曲MID", "结算播放量", "运营播放量", "分享量", "收藏量", "运营搜播量", "结算搜播量", "拉新用户数", "拉活用户数", "分享率", "结算播放份额", "数据日期"]""",
|
||||||
"prior_schema_links":"""['4234234'->MPPM歌手ID]""",
|
"question": "刘锝桦在1992年4月2日到2020年5月2日之间发布的播放量大于20万的歌曲有哪些",
|
||||||
|
"prior_schema_links": """['4234234'->MPPM歌手ID]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“刘锝桦在1992年4月2日到2020年5月2日之间发布的播放量大于20万的歌曲有哪些“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“刘锝桦在1992年4月2日到2020年5月2日之间发布的播放量大于20万的歌曲有哪些“中,我们被问:
|
||||||
“播放量大于20万的”,所以我们需要column=[结算播放量]
|
“播放量大于20万的”,所以我们需要column=[结算播放量]
|
||||||
”1992年4月2日到2020年5月2日之间发布的“,所以我们需要column=[发布时间]
|
”1992年4月2日到2020年5月2日之间发布的“,所以我们需要column=[发布时间]
|
||||||
”刘锝桦“,所以我们需要column=[歌手名]
|
”刘锝桦“,所以我们需要column=[歌手名]
|
||||||
基于table和columns,可能的cell values 是 = ['刘锝桦', 1992, 4, 2, 2020, 5, 2, 200000]。""",
|
基于table和columns,可能的cell values 是 = ['刘锝桦', 1992, 4, 2, 2020, 5, 2, 200000]。""",
|
||||||
"schema_links":"""["结算播放量", "发布时间", "歌手名", "刘锝桦", 1992, 4, 2, 2020, 5, 2, 200000]""",
|
"schema_links": """["结算播放量", "发布时间", "歌手名", "刘锝桦", 1992, 4, 2, 2020, 5, 2, 200000]""",
|
||||||
"sql":"""select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 1992 and MONTH(发布时间) >= 4 and DAY(发布时间) >= 2 and YEAR(发布时间) <= 2020 and MONTH(发布时间) <= 5 and DAY(发布时间) <= 2 and 歌手名 = '刘锝桦' and 结算播放量 > 200000 and 数据日期 = '2023-08-16'"""
|
"sql": """select 歌曲名 from 歌曲库 where YEAR(发布时间) >= 1992 and MONTH(发布时间) >= 4 and DAY(发布时间) >= 2 and YEAR(发布时间) <= 2020 and MONTH(发布时间) <= 5 and DAY(发布时间) <= 2 and 歌手名 = '刘锝桦' and 结算播放量 > 200000 and 数据日期 = '2023-08-16'""",
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"current_date":"2023-09-04",
|
"current_date": "2023-09-04",
|
||||||
"table_name":"内容库产品",
|
"table_name": "内容库产品",
|
||||||
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
|
"fields_list": """["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
|
||||||
"question":"内容库近30天访问次数的平均数",
|
"question": "内容库近30天访问次数的平均数",
|
||||||
"prior_schema_links":"""[]""",
|
"prior_schema_links": """[]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“内容库近30天访问次数的平均数“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“内容库近30天访问次数的平均数“中,我们被问:
|
||||||
“访问次数的平均数”,所以我们需要column=[访问次数]
|
“访问次数的平均数”,所以我们需要column=[访问次数]
|
||||||
”内容库近30天“,所以我们需要column=[数据日期]
|
”内容库近30天“,所以我们需要column=[数据日期]
|
||||||
基于table和columns,可能的cell values 是 = [30]。""",
|
基于table和columns,可能的cell values 是 = [30]。""",
|
||||||
"schema_links":"""["访问次数", "数据日期", 30]""",
|
"schema_links": """["访问次数", "数据日期", 30]""",
|
||||||
"sql":"""select avg(访问次数) from 内容库产品 where datediff('day', 数据日期, '2023-09-04') <= 30 """
|
"sql": """select avg(访问次数) from 内容库产品 where datediff('day', 数据日期, '2023-09-04') <= 30 """,
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"current_date":"2023-09-04",
|
"current_date": "2023-09-04",
|
||||||
"table_name":"内容库产品",
|
"table_name": "内容库产品",
|
||||||
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
|
"fields_list": """["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
|
||||||
"question":"内容库近半年哪个月的访问次数汇总最高",
|
"question": "内容库近半年哪个月的访问次数汇总最高",
|
||||||
"prior_schema_links":"""[]""",
|
"prior_schema_links": """[]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“内容库近半年哪个月的访问次数汇总最高“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“内容库近半年哪个月的访问次数汇总最高“中,我们被问:
|
||||||
“访问次数汇总最高”,所以我们需要column=[访问次数]
|
“访问次数汇总最高”,所以我们需要column=[访问次数]
|
||||||
”内容库近半年“,所以我们需要column=[数据日期]
|
”内容库近半年“,所以我们需要column=[数据日期]
|
||||||
基于table和columns,可能的cell values 是 = [0.5]。""",
|
基于table和columns,可能的cell values 是 = [0.5]。""",
|
||||||
"schema_links":"""["访问次数", "数据日期", 0.5]""",
|
"schema_links": """["访问次数", "数据日期", 0.5]""",
|
||||||
"sql":"""select MONTH(数据日期), sum(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期) order by sum(访问次数) desc limit 1 """
|
"sql": """select MONTH(数据日期), sum(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期) order by sum(访问次数) desc limit 1 """,
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"current_date":"2023-09-04",
|
"current_date": "2023-09-04",
|
||||||
"table_name":"内容库产品",
|
"table_name": "内容库产品",
|
||||||
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
|
"fields_list": """["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
|
||||||
"question":"内容库近半年每个月的平均访问次数",
|
"question": "内容库近半年每个月的平均访问次数",
|
||||||
"prior_schema_links":"""[]""",
|
"prior_schema_links": """[]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“内容库近半年每个月的平均访问次数“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“内容库近半年每个月的平均访问次数“中,我们被问:
|
||||||
“每个月的平均访问次数”,所以我们需要column=[访问次数]
|
“每个月的平均访问次数”,所以我们需要column=[访问次数]
|
||||||
”内容库近半年“,所以我们需要column=[数据日期]
|
”内容库近半年“,所以我们需要column=[数据日期]
|
||||||
基于table和columns,可能的cell values 是 = [0.5]。""",
|
基于table和columns,可能的cell values 是 = [0.5]。""",
|
||||||
"schema_links":"""["访问次数", "数据日期", 0.5]""",
|
"schema_links": """["访问次数", "数据日期", 0.5]""",
|
||||||
"sql":"""select MONTH(数据日期), avg(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期) """
|
"sql": """select MONTH(数据日期), avg(访问次数) from 内容库产品 where datediff('year', 数据日期, '2023-09-04') <= 0.5 group by MONTH(数据日期) """,
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"current_date":"2023-09-10",
|
"current_date": "2023-09-10",
|
||||||
"table_name":"内容库产品",
|
"table_name": "内容库产品",
|
||||||
"fields_list":"""["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
|
"fields_list": """["用户名", "部门", "模块", "访问时长", "访问次数", "访问人数", "数据日期"]""",
|
||||||
"question":"内容库 按部门统计访问次数 top10 的部门",
|
"question": "内容库 按部门统计访问次数 top10 的部门",
|
||||||
"prior_schema_links":"""[]""",
|
"prior_schema_links": """[]""",
|
||||||
"analysis": """让我们一步一步地思考。在问题“内容库 按部门统计访问次数 top10 的部门“中,我们被问:
|
"analysis": """让我们一步一步地思考。在问题“内容库 按部门统计访问次数 top10 的部门“中,我们被问:
|
||||||
“访问次数 top10 的部门”,所以我们需要column=[访问次数]
|
“访问次数 top10 的部门”,所以我们需要column=[访问次数]
|
||||||
”内容库 按部门统计“,所以我们需要column=[部门]
|
”内容库 按部门统计“,所以我们需要column=[部门]
|
||||||
基于table和columns,可能的cell values 是 = [10]。""",
|
基于table和columns,可能的cell values 是 = [10]。""",
|
||||||
"schema_links":"""["访问次数", "部门", 10]""",
|
"schema_links": """["访问次数", "部门", 10]""",
|
||||||
"sql":"""select 部门, sum(访问次数) from 内容库产品 group by 部门 order by sum(访问次数) desc limit 10 """
|
"sql": """select 部门, sum(访问次数) from 内容库产品 group by 部门 order by sum(访问次数) desc limit 10 """,
|
||||||
}
|
},
|
||||||
]
|
]
|
||||||
|
|||||||
@@ -14,7 +14,7 @@ def construct_plugin_prompt(tool_config):
|
|||||||
tool_name = tool_config["name"]
|
tool_name = tool_config["name"]
|
||||||
tool_description = tool_config["description"]
|
tool_description = tool_config["description"]
|
||||||
tool_examples = tool_config["examples"]
|
tool_examples = tool_config["examples"]
|
||||||
|
|
||||||
prompt = "【工具名称】\n" + tool_name + "\n"
|
prompt = "【工具名称】\n" + tool_name + "\n"
|
||||||
prompt += "【工具描述】\n" + tool_description + "\n"
|
prompt += "【工具描述】\n" + tool_description + "\n"
|
||||||
|
|
||||||
@@ -23,6 +23,7 @@ def construct_plugin_prompt(tool_config):
|
|||||||
prompt += example + "\n"
|
prompt += example + "\n"
|
||||||
return prompt
|
return prompt
|
||||||
|
|
||||||
|
|
||||||
def construct_plugin_pool_prompt(tool_config_list):
|
def construct_plugin_pool_prompt(tool_config_list):
|
||||||
tool_explain_list = []
|
tool_explain_list = []
|
||||||
for tool_config in tool_config_list:
|
for tool_config in tool_config_list:
|
||||||
@@ -35,15 +36,20 @@ def construct_plugin_pool_prompt(tool_config_list):
|
|||||||
|
|
||||||
|
|
||||||
def construct_task_prompt(query_text, tool_explain_list_str):
|
def construct_task_prompt(query_text, tool_explain_list_str):
|
||||||
instruction = """问题为:{query_text}\n请根据问题和工具的描述,选择对应的工具,完成任务。请注意,只能选择1个工具。请一步一步地分析选择工具的原因(每个工具的【工具适用问题示例】是选择的重要参考依据),并给出最终选择,输出格式为json,key为’分析过程‘, ’选择工具‘""".format(query_text=query_text)
|
instruction = """问题为:{query_text}\n请根据问题和工具的描述,选择对应的工具,完成任务。请注意,只能选择1个工具。请一步一步地分析选择工具的原因(每个工具的【工具适用问题示例】是选择的重要参考依据),并给出最终选择,输出格式为json,key为’分析过程‘, ’选择工具‘""".format(
|
||||||
|
query_text=query_text
|
||||||
|
)
|
||||||
|
|
||||||
|
prompt = "工具选择如下:\n\n{tool_explain_list_str}\n\n【任务说明】\n{instruction}".format(
|
||||||
|
instruction=instruction, tool_explain_list_str=tool_explain_list_str
|
||||||
|
)
|
||||||
|
|
||||||
prompt = "工具选择如下:\n\n{tool_explain_list_str}\n\n【任务说明】\n{instruction}".format(instruction=instruction, tool_explain_list_str=tool_explain_list_str)
|
|
||||||
|
|
||||||
return prompt
|
return prompt
|
||||||
|
|
||||||
def plugin_selection_output_parse(llm_output: str)-> Union[Mapping[str, str], None]:
|
|
||||||
|
def plugin_selection_output_parse(llm_output: str) -> Union[Mapping[str, str], None]:
|
||||||
try:
|
try:
|
||||||
pattern = r'\{[^{}]+\}'
|
pattern = r"\{[^{}]+\}"
|
||||||
find_result = re.findall(pattern, llm_output)
|
find_result = re.findall(pattern, llm_output)
|
||||||
result = find_result[0].strip()
|
result = find_result[0].strip()
|
||||||
|
|
||||||
@@ -52,20 +58,24 @@ def plugin_selection_output_parse(llm_output: str)-> Union[Mapping[str, str], No
|
|||||||
result_dict = json.loads(result)
|
result_dict = json.loads(result)
|
||||||
print("result_dict: ", result_dict)
|
print("result_dict: ", result_dict)
|
||||||
|
|
||||||
key_mapping = {
|
key_mapping = {"分析过程": "analysis", "选择工具": "toolSelection"}
|
||||||
"分析过程":"analysis",
|
|
||||||
"选择工具":"toolSelection"
|
|
||||||
}
|
|
||||||
|
|
||||||
converted_result_dict = {key_mapping[key]: value for key, value in result_dict.items() if key in key_mapping}
|
converted_result_dict = {
|
||||||
|
key_mapping[key]: value
|
||||||
|
for key, value in result_dict.items()
|
||||||
|
if key in key_mapping
|
||||||
|
}
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(e)
|
print(e)
|
||||||
converted_result_dict = None
|
converted_result_dict = None
|
||||||
|
|
||||||
return converted_result_dict
|
return converted_result_dict
|
||||||
|
|
||||||
def plugins_config_format_convert(plugin_config_list: List[Mapping[str, Any]]) -> List[Mapping[str, Any]]:
|
|
||||||
|
def plugins_config_format_convert(
|
||||||
|
plugin_config_list: List[Mapping[str, Any]]
|
||||||
|
) -> List[Mapping[str, Any]]:
|
||||||
plugin_config_list_new = []
|
plugin_config_list_new = []
|
||||||
for plugin_config in plugin_config_list:
|
for plugin_config in plugin_config_list:
|
||||||
plugin_config_new = dict()
|
plugin_config_new = dict()
|
||||||
@@ -75,7 +85,9 @@ def plugins_config_format_convert(plugin_config_list: List[Mapping[str, Any]]) -
|
|||||||
parameters = plugin_config["parameters"]
|
parameters = plugin_config["parameters"]
|
||||||
|
|
||||||
examples_str = "\n".join(examples)
|
examples_str = "\n".join(examples)
|
||||||
description_new = """{plugin_desc}\n\n例如能够处理如下问题:\n{examples_str}""".format(plugin_desc=description, examples_str=examples_str)
|
description_new = """{plugin_desc}\n\n例如能够处理如下问题:\n{examples_str}""".format(
|
||||||
|
plugin_desc=description, examples_str=examples_str
|
||||||
|
)
|
||||||
|
|
||||||
plugin_config_new["name"] = name
|
plugin_config_new["name"] = name
|
||||||
plugin_config_new["description"] = description_new
|
plugin_config_new["description"] = description_new
|
||||||
@@ -84,4 +96,3 @@ def plugins_config_format_convert(plugin_config_list: List[Mapping[str, Any]]) -
|
|||||||
plugin_config_list_new.append(plugin_config_new)
|
plugin_config_list_new.append(plugin_config_new)
|
||||||
|
|
||||||
return plugin_config_list_new
|
return plugin_config_list_new
|
||||||
|
|
||||||
|
|||||||
@@ -10,12 +10,19 @@ import sys
|
|||||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||||
|
|
||||||
from plugin_call.prompt_construct import construct_plugin_pool_prompt, construct_task_prompt, plugin_selection_output_parse, plugins_config_format_convert
|
from plugin_call.prompt_construct import (
|
||||||
|
construct_plugin_pool_prompt,
|
||||||
|
construct_task_prompt,
|
||||||
|
plugin_selection_output_parse,
|
||||||
|
plugins_config_format_convert,
|
||||||
|
)
|
||||||
from util.llm_instance import llm
|
from util.llm_instance import llm
|
||||||
|
|
||||||
|
|
||||||
def plugin_selection_run(query_text: str, plugin_configs: List[Mapping[str, Any]])-> Union[Mapping[str, str], None]:
|
def plugin_selection_run(
|
||||||
|
query_text: str, plugin_configs: List[Mapping[str, Any]]
|
||||||
|
) -> Union[Mapping[str, str], None]:
|
||||||
|
|
||||||
tools_prompt = construct_plugin_pool_prompt(plugin_configs)
|
tools_prompt = construct_plugin_pool_prompt(plugin_configs)
|
||||||
|
|
||||||
task_prompt = construct_task_prompt(query_text, tools_prompt)
|
task_prompt = construct_task_prompt(query_text, tools_prompt)
|
||||||
@@ -23,4 +30,3 @@ def plugin_selection_run(query_text: str, plugin_configs: List[Mapping[str, Any]
|
|||||||
parsed_output = plugin_selection_output_parse(llm_output)
|
parsed_output = plugin_selection_output_parse(llm_output)
|
||||||
|
|
||||||
return parsed_output
|
return parsed_output
|
||||||
|
|
||||||
|
|||||||
@@ -11,7 +11,7 @@ sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|||||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||||
|
|
||||||
|
|
||||||
def get_ids(documents:List[str]) -> List[str]:
|
def get_ids(documents: List[str]) -> List[str]:
|
||||||
ids = []
|
ids = []
|
||||||
for doc in documents:
|
for doc in documents:
|
||||||
ids.append(str(uuid.uuid5(uuid.NAMESPACE_URL, doc)))
|
ids.append(str(uuid.uuid5(uuid.NAMESPACE_URL, doc)))
|
||||||
@@ -19,25 +19,23 @@ def get_ids(documents:List[str]) -> List[str]:
|
|||||||
return ids
|
return ids
|
||||||
|
|
||||||
|
|
||||||
def add2preset_query_collection(collection:Collection,
|
def add2preset_query_collection(
|
||||||
preset_queries:List[str],
|
collection: Collection, preset_queries: List[str], preset_query_ids: List[str]
|
||||||
preset_query_ids:List[str]
|
) -> None:
|
||||||
) -> None:
|
|
||||||
|
|
||||||
collection.add(documents=preset_queries,
|
collection.add(documents=preset_queries, ids=preset_query_ids)
|
||||||
ids=preset_query_ids)
|
|
||||||
|
|
||||||
|
|
||||||
def update_preset_query_collection(collection:Collection,
|
def update_preset_query_collection(
|
||||||
preset_queries:List[str],
|
collection: Collection, preset_queries: List[str], preset_query_ids: List[str]
|
||||||
preset_query_ids:List[str]
|
) -> None:
|
||||||
) -> None:
|
|
||||||
|
|
||||||
collection.update(documents=preset_queries,
|
|
||||||
ids=preset_query_ids)
|
|
||||||
|
|
||||||
|
|
||||||
def query2preset_query_collection(collection:Collection, query_texts:List[str], n_results:int=10):
|
collection.update(documents=preset_queries, ids=preset_query_ids)
|
||||||
|
|
||||||
|
|
||||||
|
def query2preset_query_collection(
|
||||||
|
collection: Collection, query_texts: List[str], n_results: int = 10
|
||||||
|
):
|
||||||
collection_cnt = collection.count()
|
collection_cnt = collection.count()
|
||||||
min_n_results = 10
|
min_n_results = 10
|
||||||
min_n_results = min(collection_cnt, min_n_results)
|
min_n_results = min(collection_cnt, min_n_results)
|
||||||
@@ -56,12 +54,13 @@ def query2preset_query_collection(collection:Collection, query_texts:List[str],
|
|||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def parse_retrieval_preset_query(res:List[Mapping[str, Any]]):
|
|
||||||
parsed_res = [[] for _ in range(0, len(res['ids']))]
|
|
||||||
|
|
||||||
retrieval_ids = res['ids']
|
def parse_retrieval_preset_query(res: List[Mapping[str, Any]]):
|
||||||
retrieval_distances = res['distances']
|
parsed_res = [[] for _ in range(0, len(res["ids"]))]
|
||||||
retrieval_sentences = res['documents']
|
|
||||||
|
retrieval_ids = res["ids"]
|
||||||
|
retrieval_distances = res["distances"]
|
||||||
|
retrieval_sentences = res["documents"]
|
||||||
|
|
||||||
for query_idx in range(0, len(retrieval_ids)):
|
for query_idx in range(0, len(retrieval_ids)):
|
||||||
id_ls = retrieval_ids[query_idx]
|
id_ls = retrieval_ids[query_idx]
|
||||||
@@ -73,43 +72,41 @@ def parse_retrieval_preset_query(res:List[Mapping[str, Any]]):
|
|||||||
distance = distance_ls[idx]
|
distance = distance_ls[idx]
|
||||||
sentence = sentence_ls[idx]
|
sentence = sentence_ls[idx]
|
||||||
|
|
||||||
parsed_res[query_idx].append({
|
parsed_res[query_idx].append(
|
||||||
'id': id,
|
{"id": id, "distance": distance, "presetQuery": sentence}
|
||||||
'distance': distance,
|
)
|
||||||
'presetQuery': sentence
|
|
||||||
})
|
|
||||||
|
|
||||||
return parsed_res
|
return parsed_res
|
||||||
|
|
||||||
def preset_query_retrieval_format(query_list:List[str], retrieval_list:List[Mapping[str, Any]]):
|
|
||||||
|
def preset_query_retrieval_format(
|
||||||
|
query_list: List[str], retrieval_list: List[Mapping[str, Any]]
|
||||||
|
):
|
||||||
res = []
|
res = []
|
||||||
for query_idx in range(0, len(query_list)):
|
for query_idx in range(0, len(query_list)):
|
||||||
query = query_list[query_idx]
|
query = query_list[query_idx]
|
||||||
retrieval = retrieval_list[query_idx]
|
retrieval = retrieval_list[query_idx]
|
||||||
|
|
||||||
res.append({
|
res.append({"query": query, "retrieval": retrieval})
|
||||||
'query': query,
|
|
||||||
'retrieval': retrieval
|
|
||||||
})
|
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def empty_preset_query_collection(collection:Collection) -> None:
|
|
||||||
|
def empty_preset_query_collection(collection: Collection) -> None:
|
||||||
collection.delete()
|
collection.delete()
|
||||||
|
|
||||||
def delete_preset_query_by_ids(collection:Collection, preset_query_ids:List[str]) -> None:
|
|
||||||
|
def delete_preset_query_by_ids(
|
||||||
|
collection: Collection, preset_query_ids: List[str]
|
||||||
|
) -> None:
|
||||||
collection.delete(ids=preset_query_ids)
|
collection.delete(ids=preset_query_ids)
|
||||||
|
|
||||||
def get_preset_query_by_ids(collection:Collection, preset_query_ids:List[str]):
|
|
||||||
|
def get_preset_query_by_ids(collection: Collection, preset_query_ids: List[str]):
|
||||||
res = collection.get(ids=preset_query_ids)
|
res = collection.get(ids=preset_query_ids)
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
def preset_query_collection_size(collection:Collection) -> int:
|
|
||||||
|
def preset_query_collection_size(collection: Collection) -> int:
|
||||||
return collection.count()
|
return collection.count()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -13,34 +13,45 @@ from chromadb.api import Collection, Documents, Embeddings
|
|||||||
|
|
||||||
from langchain.llms import OpenAI
|
from langchain.llms import OpenAI
|
||||||
|
|
||||||
from preset_query_db import (get_ids, add2preset_query_collection,
|
from preset_query_db import (
|
||||||
query2preset_query_collection, parse_retrieval_preset_query,
|
get_ids,
|
||||||
preset_query_retrieval_format, empty_preset_query_collection, preset_query_collection_size)
|
add2preset_query_collection,
|
||||||
|
query2preset_query_collection,
|
||||||
|
parse_retrieval_preset_query,
|
||||||
|
preset_query_retrieval_format,
|
||||||
|
empty_preset_query_collection,
|
||||||
|
preset_query_collection_size,
|
||||||
|
)
|
||||||
|
|
||||||
from util.text2vec import Text2VecEmbeddingFunction
|
from util.text2vec import Text2VecEmbeddingFunction
|
||||||
|
|
||||||
from run_config import CHROMA_DB_PERSIST_PATH, PRESET_QUERY_COLLECTION_NAME
|
from run_config import CHROMA_DB_PERSIST_PATH, PRESET_QUERY_COLLECTION_NAME
|
||||||
from util.chromadb_instance import client
|
from util.chromadb_instance import client
|
||||||
|
|
||||||
|
|
||||||
emb_func = Text2VecEmbeddingFunction()
|
emb_func = Text2VecEmbeddingFunction()
|
||||||
|
|
||||||
collection = client.get_or_create_collection(name=PRESET_QUERY_COLLECTION_NAME,
|
collection = client.get_or_create_collection(
|
||||||
embedding_function=emb_func,
|
name=PRESET_QUERY_COLLECTION_NAME,
|
||||||
metadata={"hnsw:space": "cosine"}
|
embedding_function=emb_func,
|
||||||
) # Get a collection object from an existing collection, by name. If it doesn't exist, create it.
|
metadata={"hnsw:space": "cosine"},
|
||||||
|
) # Get a collection object from an existing collection, by name. If it doesn't exist, create it.
|
||||||
|
|
||||||
print("init_preset_query_collection_size: ", preset_query_collection_size(collection))
|
print("init_preset_query_collection_size: ", preset_query_collection_size(collection))
|
||||||
|
|
||||||
|
|
||||||
def preset_query_retrieval_run(collection:Collection, query_texts_list:List[str], n_results:int=5):
|
def preset_query_retrieval_run(
|
||||||
retrieval_res = query2preset_query_collection(collection=collection,
|
collection: Collection, query_texts_list: List[str], n_results: int = 5
|
||||||
query_texts=query_texts_list,
|
):
|
||||||
n_results=n_results)
|
retrieval_res = query2preset_query_collection(
|
||||||
|
collection=collection, query_texts=query_texts_list, n_results=n_results
|
||||||
|
)
|
||||||
|
|
||||||
parsed_retrieval_res = parse_retrieval_preset_query(retrieval_res)
|
parsed_retrieval_res = parse_retrieval_preset_query(retrieval_res)
|
||||||
parsed_retrieval_res_format = preset_query_retrieval_format(query_texts_list, parsed_retrieval_res)
|
parsed_retrieval_res_format = preset_query_retrieval_format(
|
||||||
|
query_texts_list, parsed_retrieval_res
|
||||||
|
)
|
||||||
|
|
||||||
print('parsed_retrieval_res_format: ', parsed_retrieval_res_format)
|
print("parsed_retrieval_res_format: ", parsed_retrieval_res_format)
|
||||||
|
|
||||||
return parsed_retrieval_res_format
|
return parsed_retrieval_res_format
|
||||||
|
|||||||
@@ -11,7 +11,7 @@ OPENAI_API_KEY = "YOUR_API_KEY"
|
|||||||
|
|
||||||
TEMPERATURE = 0.0
|
TEMPERATURE = 0.0
|
||||||
|
|
||||||
CHROMA_DB_PERSIST_DIR = 'chm_db'
|
CHROMA_DB_PERSIST_DIR = "chm_db"
|
||||||
PRESET_QUERY_COLLECTION_NAME = "preset_query_collection"
|
PRESET_QUERY_COLLECTION_NAME = "preset_query_collection"
|
||||||
TEXT2DSL_COLLECTION_NAME = "text2dsl_collection"
|
TEXT2DSL_COLLECTION_NAME = "text2dsl_collection"
|
||||||
TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM = 15
|
TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM = 15
|
||||||
@@ -21,9 +21,9 @@ CHROMA_DB_PERSIST_PATH = os.path.join(PROJECT_DIR_PATH, CHROMA_DB_PERSIST_DIR)
|
|||||||
|
|
||||||
HF_TEXT2VEC_MODEL_NAME = "GanymedeNil/text2vec-large-chinese"
|
HF_TEXT2VEC_MODEL_NAME = "GanymedeNil/text2vec-large-chinese"
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == "__main__":
|
||||||
print('PROJECT_DIR_PATH: ', PROJECT_DIR_PATH)
|
print("PROJECT_DIR_PATH: ", PROJECT_DIR_PATH)
|
||||||
print('EMB_MODEL_PATH: ', HF_TEXT2VEC_MODEL_NAME)
|
print("EMB_MODEL_PATH: ", HF_TEXT2VEC_MODEL_NAME)
|
||||||
print('CHROMA_DB_PERSIST_PATH: ', CHROMA_DB_PERSIST_PATH)
|
print("CHROMA_DB_PERSIST_PATH: ", CHROMA_DB_PERSIST_PATH)
|
||||||
print('LLMPARSER_HOST: ', LLMPARSER_HOST)
|
print("LLMPARSER_HOST: ", LLMPARSER_HOST)
|
||||||
print('LLMPARSER_PORT: ', LLMPARSER_PORT)
|
print("LLMPARSER_PORT: ", LLMPARSER_PORT)
|
||||||
|
|||||||
@@ -22,20 +22,34 @@ from util.text2vec import Text2VecEmbeddingFunction, hg_embedding
|
|||||||
from util.chromadb_instance import client as chromadb_client, empty_chroma_collection_2
|
from util.chromadb_instance import client as chromadb_client, empty_chroma_collection_2
|
||||||
from run_config import TEXT2DSL_COLLECTION_NAME, TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
|
from run_config import TEXT2DSL_COLLECTION_NAME, TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
|
||||||
|
|
||||||
def reload_sql_example_collection(vectorstore:Chroma,
|
|
||||||
sql_examplars:List[Mapping[str, str]],
|
def reload_sql_example_collection(
|
||||||
sql_example_selector:SemanticSimilarityExampleSelector,
|
vectorstore: Chroma,
|
||||||
example_nums:int
|
sql_examplars: List[Mapping[str, str]],
|
||||||
):
|
sql_example_selector: SemanticSimilarityExampleSelector,
|
||||||
|
example_nums: int,
|
||||||
|
):
|
||||||
print("original sql_examples_collection size:", vectorstore._collection.count())
|
print("original sql_examples_collection size:", vectorstore._collection.count())
|
||||||
new_collection = empty_chroma_collection_2(collection=vectorstore._collection)
|
new_collection = empty_chroma_collection_2(collection=vectorstore._collection)
|
||||||
vectorstore._collection = new_collection
|
vectorstore._collection = new_collection
|
||||||
|
|
||||||
print("emptied sql_examples_collection size:", vectorstore._collection.count())
|
print("emptied sql_examples_collection size:", vectorstore._collection.count())
|
||||||
|
|
||||||
sql_example_selector = SemanticSimilarityExampleSelector(vectorstore=sql_examples_vectorstore, k=example_nums,
|
sql_example_selector = SemanticSimilarityExampleSelector(
|
||||||
input_keys=["question"],
|
vectorstore=sql_examples_vectorstore,
|
||||||
example_keys=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links", "current_date", "sql"])
|
k=example_nums,
|
||||||
|
input_keys=["question"],
|
||||||
|
example_keys=[
|
||||||
|
"table_name",
|
||||||
|
"fields_list",
|
||||||
|
"prior_schema_links",
|
||||||
|
"question",
|
||||||
|
"analysis",
|
||||||
|
"schema_links",
|
||||||
|
"current_date",
|
||||||
|
"sql",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
for example in sql_examplars:
|
for example in sql_examplars:
|
||||||
sql_example_selector.add_example(example)
|
sql_example_selector.add_example(example)
|
||||||
@@ -45,20 +59,36 @@ def reload_sql_example_collection(vectorstore:Chroma,
|
|||||||
return vectorstore, sql_example_selector
|
return vectorstore, sql_example_selector
|
||||||
|
|
||||||
|
|
||||||
sql_examples_vectorstore = Chroma(collection_name=TEXT2DSL_COLLECTION_NAME,
|
sql_examples_vectorstore = Chroma(
|
||||||
embedding_function=hg_embedding,
|
collection_name=TEXT2DSL_COLLECTION_NAME,
|
||||||
client=chromadb_client)
|
embedding_function=hg_embedding,
|
||||||
|
client=chromadb_client,
|
||||||
|
)
|
||||||
|
|
||||||
example_nums = TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
|
example_nums = TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM
|
||||||
|
|
||||||
sql_example_selector = SemanticSimilarityExampleSelector(vectorstore=sql_examples_vectorstore, k=example_nums,
|
sql_example_selector = SemanticSimilarityExampleSelector(
|
||||||
input_keys=["question"],
|
vectorstore=sql_examples_vectorstore,
|
||||||
example_keys=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links", "current_date", "sql"])
|
k=example_nums,
|
||||||
|
input_keys=["question"],
|
||||||
|
example_keys=[
|
||||||
|
"table_name",
|
||||||
|
"fields_list",
|
||||||
|
"prior_schema_links",
|
||||||
|
"question",
|
||||||
|
"analysis",
|
||||||
|
"schema_links",
|
||||||
|
"current_date",
|
||||||
|
"sql",
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
if sql_examples_vectorstore._collection.count() > 0:
|
if sql_examples_vectorstore._collection.count() > 0:
|
||||||
print("examples already in sql_vectorstore")
|
print("examples already in sql_vectorstore")
|
||||||
print("init sql_vectorstore size:", sql_examples_vectorstore._collection.count())
|
print("init sql_vectorstore size:", sql_examples_vectorstore._collection.count())
|
||||||
|
|
||||||
print("sql_examplars size:", len(sql_examplars))
|
print("sql_examplars size:", len(sql_examplars))
|
||||||
sql_examples_vectorstore, sql_example_selector = reload_sql_example_collection(sql_examples_vectorstore, sql_examplars, sql_example_selector, example_nums)
|
sql_examples_vectorstore, sql_example_selector = reload_sql_example_collection(
|
||||||
|
sql_examples_vectorstore, sql_examplars, sql_example_selector, example_nums
|
||||||
|
)
|
||||||
print("added sql_vectorstore size:", sql_examples_vectorstore._collection.count())
|
print("added sql_vectorstore size:", sql_examples_vectorstore._collection.count())
|
||||||
|
|||||||
@@ -13,17 +13,31 @@ from few_shot_example.sql_exampler import examplars as sql_examplars
|
|||||||
from run_config import LLMPARSER_HOST, LLMPARSER_PORT
|
from run_config import LLMPARSER_HOST, LLMPARSER_PORT
|
||||||
|
|
||||||
|
|
||||||
def text2dsl_setting_update(llm_parser_host:str, llm_parser_port:str,
|
def text2dsl_setting_update(
|
||||||
sql_examplars:List[Mapping[str, str]], example_nums:int, is_shortcut:bool):
|
llm_parser_host: str,
|
||||||
|
llm_parser_port: str,
|
||||||
|
sql_examplars: List[Mapping[str, str]],
|
||||||
|
example_nums: int,
|
||||||
|
is_shortcut: bool,
|
||||||
|
):
|
||||||
|
|
||||||
url = f"http://{llm_parser_host}:{llm_parser_port}/query2sql_setting_update/"
|
url = f"http://{llm_parser_host}:{llm_parser_port}/query2sql_setting_update/"
|
||||||
print("url: ", url)
|
print("url: ", url)
|
||||||
payload = {"sqlExamplars":sql_examplars, "exampleNums":example_nums, "isShortcut":is_shortcut}
|
payload = {
|
||||||
headers = {'content-type': 'application/json'}
|
"sqlExamplars": sql_examplars,
|
||||||
|
"exampleNums": example_nums,
|
||||||
|
"isShortcut": is_shortcut,
|
||||||
|
}
|
||||||
|
headers = {"content-type": "application/json"}
|
||||||
response = requests.post(url, data=json.dumps(payload), headers=headers)
|
response = requests.post(url, data=json.dumps(payload), headers=headers)
|
||||||
print(response.text)
|
print(response.text)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
text2dsl_setting_update(LLMPARSER_HOST, LLMPARSER_PORT,
|
text2dsl_setting_update(
|
||||||
sql_examplars, TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM, TEXT2DSL_IS_SHORTCUT)
|
LLMPARSER_HOST,
|
||||||
|
LLMPARSER_PORT,
|
||||||
|
sql_examplars,
|
||||||
|
TEXT2DSL_FEW_SHOTS_EXAMPLE_NUM,
|
||||||
|
TEXT2DSL_IS_SHORTCUT,
|
||||||
|
)
|
||||||
|
|||||||
@@ -1,21 +1,25 @@
|
|||||||
# -*- coding:utf-8 -*-
|
# -*- coding:utf-8 -*-
|
||||||
import re
|
import re
|
||||||
|
|
||||||
|
|
||||||
def schema_link_parse(schema_link_output):
|
def schema_link_parse(schema_link_output):
|
||||||
try:
|
try:
|
||||||
schema_link_output = schema_link_output.strip()
|
schema_link_output = schema_link_output.strip()
|
||||||
pattern = r'Schema_links:(.*)'
|
pattern = r"Schema_links:(.*)"
|
||||||
schema_link_output = re.findall(pattern, schema_link_output, re.DOTALL)[0].strip()
|
schema_link_output = re.findall(pattern, schema_link_output, re.DOTALL)[
|
||||||
|
0
|
||||||
|
].strip()
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print(e)
|
print(e)
|
||||||
schema_link_output = None
|
schema_link_output = None
|
||||||
|
|
||||||
return schema_link_output
|
return schema_link_output
|
||||||
|
|
||||||
|
|
||||||
def combo_schema_link_parse(schema_linking_sql_combo_output: str):
|
def combo_schema_link_parse(schema_linking_sql_combo_output: str):
|
||||||
try:
|
try:
|
||||||
schema_linking_sql_combo_output = schema_linking_sql_combo_output.strip()
|
schema_linking_sql_combo_output = schema_linking_sql_combo_output.strip()
|
||||||
pattern = r'Schema_links:(\[.*?\])'
|
pattern = r"Schema_links:(\[.*?\])"
|
||||||
schema_links_match = re.search(pattern, schema_linking_sql_combo_output)
|
schema_links_match = re.search(pattern, schema_linking_sql_combo_output)
|
||||||
|
|
||||||
if schema_links_match:
|
if schema_links_match:
|
||||||
@@ -28,10 +32,11 @@ def combo_schema_link_parse(schema_linking_sql_combo_output: str):
|
|||||||
|
|
||||||
return schema_links
|
return schema_links
|
||||||
|
|
||||||
|
|
||||||
def combo_sql_parse(schema_linking_sql_combo_output: str):
|
def combo_sql_parse(schema_linking_sql_combo_output: str):
|
||||||
try:
|
try:
|
||||||
schema_linking_sql_combo_output = schema_linking_sql_combo_output.strip()
|
schema_linking_sql_combo_output = schema_linking_sql_combo_output.strip()
|
||||||
pattern = r'SQL:(.*)'
|
pattern = r"SQL:(.*)"
|
||||||
sql_match = re.search(pattern, schema_linking_sql_combo_output)
|
sql_match = re.search(pattern, schema_linking_sql_combo_output)
|
||||||
|
|
||||||
if sql_match:
|
if sql_match:
|
||||||
|
|||||||
@@ -11,17 +11,31 @@ from langchain.prompts.few_shot import FewShotPromptTemplate
|
|||||||
from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
|
from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
|
||||||
|
|
||||||
|
|
||||||
def schema_linking_exampler(user_query: str,
|
def schema_linking_exampler(
|
||||||
domain_name: str,
|
user_query: str,
|
||||||
fields_list: List[str],
|
domain_name: str,
|
||||||
prior_schema_links: Mapping[str,str],
|
fields_list: List[str],
|
||||||
example_selector: SemanticSimilarityExampleSelector,
|
prior_schema_links: Mapping[str, str],
|
||||||
) -> str:
|
example_selector: SemanticSimilarityExampleSelector,
|
||||||
|
) -> str:
|
||||||
|
|
||||||
prior_schema_links_str = '['+ ','.join(["""'{}'->{}""".format(k,v) for k,v in prior_schema_links.items()]) + ']'
|
prior_schema_links_str = (
|
||||||
|
"["
|
||||||
|
+ ",".join(["""'{}'->{}""".format(k, v) for k, v in prior_schema_links.items()])
|
||||||
|
+ "]"
|
||||||
|
)
|
||||||
|
|
||||||
example_prompt_template = PromptTemplate(input_variables=["table_name", "fields_list", "prior_schema_links", "question", "analysis", "schema_links"],
|
example_prompt_template = PromptTemplate(
|
||||||
template="Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\n问题:{question}\n分析:{analysis} 所以Schema_links是:\nSchema_links:{schema_links}")
|
input_variables=[
|
||||||
|
"table_name",
|
||||||
|
"fields_list",
|
||||||
|
"prior_schema_links",
|
||||||
|
"question",
|
||||||
|
"analysis",
|
||||||
|
"schema_links",
|
||||||
|
],
|
||||||
|
template="Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\n问题:{question}\n分析:{analysis} 所以Schema_links是:\nSchema_links:{schema_links}",
|
||||||
|
)
|
||||||
|
|
||||||
instruction = "# 根据数据库的表结构,参考先验信息,找出为每个问题生成SQL查询语句的schema_links"
|
instruction = "# 根据数据库的表结构,参考先验信息,找出为每个问题生成SQL查询语句的schema_links"
|
||||||
|
|
||||||
@@ -30,81 +44,121 @@ def schema_linking_exampler(user_query: str,
|
|||||||
schema_linking_example_prompt_template = FewShotPromptTemplate(
|
schema_linking_example_prompt_template = FewShotPromptTemplate(
|
||||||
example_selector=example_selector,
|
example_selector=example_selector,
|
||||||
example_prompt=example_prompt_template,
|
example_prompt=example_prompt_template,
|
||||||
example_separator="\n\n",
|
example_separator="\n\n",
|
||||||
prefix=instruction,
|
prefix=instruction,
|
||||||
input_variables=["table_name", "fields_list", "prior_schema_links", "question"],
|
input_variables=["table_name", "fields_list", "prior_schema_links", "question"],
|
||||||
suffix=schema_linking_prompt
|
suffix=schema_linking_prompt,
|
||||||
)
|
)
|
||||||
|
|
||||||
schema_linking_example_prompt = schema_linking_example_prompt_template.format(table_name=domain_name,
|
schema_linking_example_prompt = schema_linking_example_prompt_template.format(
|
||||||
fields_list=fields_list,
|
table_name=domain_name,
|
||||||
prior_schema_links=prior_schema_links_str,
|
fields_list=fields_list,
|
||||||
question=user_query)
|
prior_schema_links=prior_schema_links_str,
|
||||||
|
question=user_query,
|
||||||
|
)
|
||||||
|
|
||||||
return schema_linking_example_prompt
|
return schema_linking_example_prompt
|
||||||
|
|
||||||
|
|
||||||
def sql_exampler(user_query: str,
|
def sql_exampler(
|
||||||
domain_name: str,
|
user_query: str,
|
||||||
schema_link_str: str,
|
domain_name: str,
|
||||||
data_date: str,
|
schema_link_str: str,
|
||||||
example_selector: SemanticSimilarityExampleSelector,
|
data_date: str,
|
||||||
) -> str:
|
example_selector: SemanticSimilarityExampleSelector,
|
||||||
|
) -> str:
|
||||||
|
|
||||||
instruction = "# 根据schema_links为每个问题生成SQL查询语句"
|
instruction = "# 根据schema_links为每个问题生成SQL查询语句"
|
||||||
|
|
||||||
sql_example_prompt_template = PromptTemplate(input_variables=["question", "current_date", "table_name", "schema_links", "sql"],
|
sql_example_prompt_template = PromptTemplate(
|
||||||
template="问题:{question}\nCurrent_date:{current_date}\nTable {table_name}\nSchema_links:{schema_links}\nSQL:{sql}")
|
input_variables=[
|
||||||
|
"question",
|
||||||
|
"current_date",
|
||||||
|
"table_name",
|
||||||
|
"schema_links",
|
||||||
|
"sql",
|
||||||
|
],
|
||||||
|
template="问题:{question}\nCurrent_date:{current_date}\nTable {table_name}\nSchema_links:{schema_links}\nSQL:{sql}",
|
||||||
|
)
|
||||||
|
|
||||||
sql_prompt = "问题:{question}\nCurrent_date:{current_date}\nTable {table_name}\nSchema_links:{schema_links}\nSQL:"
|
sql_prompt = "问题:{question}\nCurrent_date:{current_date}\nTable {table_name}\nSchema_links:{schema_links}\nSQL:"
|
||||||
|
|
||||||
sql_example_prompt_template = FewShotPromptTemplate(
|
sql_example_prompt_template = FewShotPromptTemplate(
|
||||||
example_selector=example_selector,
|
example_selector=example_selector,
|
||||||
example_prompt=sql_example_prompt_template,
|
example_prompt=sql_example_prompt_template,
|
||||||
example_separator="\n\n",
|
example_separator="\n\n",
|
||||||
prefix=instruction,
|
prefix=instruction,
|
||||||
input_variables=["question", "current_date", "table_name", "schema_links"],
|
input_variables=["question", "current_date", "table_name", "schema_links"],
|
||||||
suffix=sql_prompt
|
suffix=sql_prompt,
|
||||||
)
|
)
|
||||||
|
|
||||||
sql_example_prompt = sql_example_prompt_template.format(question=user_query,
|
sql_example_prompt = sql_example_prompt_template.format(
|
||||||
current_date=data_date,
|
question=user_query,
|
||||||
table_name=domain_name,
|
current_date=data_date,
|
||||||
schema_links=schema_link_str)
|
table_name=domain_name,
|
||||||
|
schema_links=schema_link_str,
|
||||||
|
)
|
||||||
|
|
||||||
return sql_example_prompt
|
return sql_example_prompt
|
||||||
|
|
||||||
|
|
||||||
def schema_linking_sql_combo_examplar(user_query: str,
|
def schema_linking_sql_combo_examplar(
|
||||||
domain_name: str,
|
user_query: str,
|
||||||
data_date : str,
|
domain_name: str,
|
||||||
fields_list: List[str],
|
data_date: str,
|
||||||
prior_schema_links: Mapping[str,str],
|
fields_list: List[str],
|
||||||
example_selector: SemanticSimilarityExampleSelector) -> str:
|
prior_schema_links: Mapping[str, str],
|
||||||
|
example_selector: SemanticSimilarityExampleSelector,
|
||||||
prior_schema_links_str = '['+ ','.join(["""'{}'->{}""".format(k,v) for k,v in prior_schema_links.items()]) + ']'
|
) -> str:
|
||||||
|
|
||||||
example_prompt_template = PromptTemplate(input_variables=["table_name", "fields_list", "prior_schema_links", "current_date", "question", "analysis", "schema_links", "sql"],
|
prior_schema_links_str = (
|
||||||
template="Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n问题:{question}\n分析:{analysis} 所以Schema_links是:\nSchema_links:{schema_links}\nSQL:{sql}")
|
"["
|
||||||
|
+ ",".join(["""'{}'->{}""".format(k, v) for k, v in prior_schema_links.items()])
|
||||||
|
+ "]"
|
||||||
|
)
|
||||||
|
|
||||||
instruction = "# 根据数据库的表结构,参考先验信息,找出为每个问题生成SQL查询语句的schema_links,再根据schema_links为每个问题生成SQL查询语句"
|
example_prompt_template = PromptTemplate(
|
||||||
|
input_variables=[
|
||||||
|
"table_name",
|
||||||
|
"fields_list",
|
||||||
|
"prior_schema_links",
|
||||||
|
"current_date",
|
||||||
|
"question",
|
||||||
|
"analysis",
|
||||||
|
"schema_links",
|
||||||
|
"sql",
|
||||||
|
],
|
||||||
|
template="Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n问题:{question}\n分析:{analysis} 所以Schema_links是:\nSchema_links:{schema_links}\nSQL:{sql}",
|
||||||
|
)
|
||||||
|
|
||||||
|
instruction = (
|
||||||
|
"# 根据数据库的表结构,参考先验信息,找出为每个问题生成SQL查询语句的schema_links,再根据schema_links为每个问题生成SQL查询语句"
|
||||||
|
)
|
||||||
|
|
||||||
schema_linking_sql_combo_prompt = "Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n问题:{question}\n分析: 让我们一步一步地思考。"
|
schema_linking_sql_combo_prompt = "Table {table_name}, columns = {fields_list}, prior_schema_links = {prior_schema_links}\nCurrent_date:{current_date}\n问题:{question}\n分析: 让我们一步一步地思考。"
|
||||||
|
|
||||||
schema_linking_sql_combo_example_prompt_template = FewShotPromptTemplate(
|
schema_linking_sql_combo_example_prompt_template = FewShotPromptTemplate(
|
||||||
example_selector=example_selector,
|
example_selector=example_selector,
|
||||||
example_prompt=example_prompt_template,
|
example_prompt=example_prompt_template,
|
||||||
example_separator="\n\n",
|
example_separator="\n\n",
|
||||||
prefix=instruction,
|
prefix=instruction,
|
||||||
input_variables=["table_name", "fields_list", "prior_schema_links", "current_date", "question"],
|
input_variables=[
|
||||||
suffix=schema_linking_sql_combo_prompt
|
"table_name",
|
||||||
|
"fields_list",
|
||||||
|
"prior_schema_links",
|
||||||
|
"current_date",
|
||||||
|
"question",
|
||||||
|
],
|
||||||
|
suffix=schema_linking_sql_combo_prompt,
|
||||||
|
)
|
||||||
|
|
||||||
|
schema_linking_sql_combo_example_prompt = (
|
||||||
|
schema_linking_sql_combo_example_prompt_template.format(
|
||||||
|
table_name=domain_name,
|
||||||
|
fields_list=fields_list,
|
||||||
|
prior_schema_links=prior_schema_links_str,
|
||||||
|
current_date=data_date,
|
||||||
|
question=user_query,
|
||||||
)
|
)
|
||||||
|
)
|
||||||
schema_linking_sql_combo_example_prompt = schema_linking_sql_combo_example_prompt_template.format(table_name=domain_name,
|
|
||||||
fields_list=fields_list,
|
|
||||||
prior_schema_links=prior_schema_links_str,
|
|
||||||
current_date=data_date,
|
|
||||||
question=user_query)
|
|
||||||
return schema_linking_sql_combo_example_prompt
|
return schema_linking_sql_combo_example_prompt
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -7,133 +7,182 @@ import sys
|
|||||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||||
|
|
||||||
from sql.prompt_maker import schema_linking_exampler, sql_exampler, schema_linking_sql_combo_examplar
|
from sql.prompt_maker import (
|
||||||
from sql.constructor import sql_examples_vectorstore, sql_example_selector, reload_sql_example_collection
|
schema_linking_exampler,
|
||||||
from sql.output_parser import schema_link_parse, combo_schema_link_parse, combo_sql_parse
|
sql_exampler,
|
||||||
|
schema_linking_sql_combo_examplar,
|
||||||
|
)
|
||||||
|
from sql.constructor import (
|
||||||
|
sql_examples_vectorstore,
|
||||||
|
sql_example_selector,
|
||||||
|
reload_sql_example_collection,
|
||||||
|
)
|
||||||
|
from sql.output_parser import (
|
||||||
|
schema_link_parse,
|
||||||
|
combo_schema_link_parse,
|
||||||
|
combo_sql_parse,
|
||||||
|
)
|
||||||
|
|
||||||
from util.llm_instance import llm
|
from util.llm_instance import llm
|
||||||
from run_config import TEXT2DSL_IS_SHORTCUT
|
from run_config import TEXT2DSL_IS_SHORTCUT
|
||||||
|
|
||||||
|
|
||||||
class Text2DSLAgent(object):
|
class Text2DSLAgent(object):
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.schema_linking_exampler = schema_linking_exampler
|
self.schema_linking_exampler = schema_linking_exampler
|
||||||
self.sql_exampler = sql_exampler
|
self.sql_exampler = sql_exampler
|
||||||
|
|
||||||
self.schema_linking_sql_combo_exampler = schema_linking_sql_combo_examplar
|
self.schema_linking_sql_combo_exampler = schema_linking_sql_combo_examplar
|
||||||
|
|
||||||
self.sql_examples_vectorstore = sql_examples_vectorstore
|
self.sql_examples_vectorstore = sql_examples_vectorstore
|
||||||
self.sql_example_selector = sql_example_selector
|
self.sql_example_selector = sql_example_selector
|
||||||
|
|
||||||
self.schema_link_parse = schema_link_parse
|
self.schema_link_parse = schema_link_parse
|
||||||
self.combo_schema_link_parse = combo_schema_link_parse
|
self.combo_schema_link_parse = combo_schema_link_parse
|
||||||
self.combo_sql_parse = combo_sql_parse
|
self.combo_sql_parse = combo_sql_parse
|
||||||
|
|
||||||
self.llm = llm
|
self.llm = llm
|
||||||
|
|
||||||
self.is_shortcut = TEXT2DSL_IS_SHORTCUT
|
self.is_shortcut = TEXT2DSL_IS_SHORTCUT
|
||||||
|
|
||||||
def update_examples(self, sql_examples, example_nums, is_shortcut):
|
def update_examples(self, sql_examples, example_nums, is_shortcut):
|
||||||
self.sql_examples_vectorstore, self.sql_example_selector = reload_sql_example_collection(self.sql_examples_vectorstore,
|
(
|
||||||
sql_examples,
|
self.sql_examples_vectorstore,
|
||||||
self.sql_example_selector,
|
self.sql_example_selector,
|
||||||
example_nums)
|
) = reload_sql_example_collection(
|
||||||
self.is_shortcut = is_shortcut
|
self.sql_examples_vectorstore,
|
||||||
|
sql_examples,
|
||||||
|
self.sql_example_selector,
|
||||||
|
example_nums,
|
||||||
|
)
|
||||||
|
self.is_shortcut = is_shortcut
|
||||||
|
|
||||||
def query2sql(self, query_text: str,
|
def query2sql(
|
||||||
schema : Union[dict, None] = None,
|
self,
|
||||||
current_date: str = None,
|
query_text: str,
|
||||||
linking: Union[List[Mapping[str, str]], None] = None
|
schema: Union[dict, None] = None,
|
||||||
):
|
current_date: str = None,
|
||||||
|
linking: Union[List[Mapping[str, str]], None] = None,
|
||||||
|
):
|
||||||
|
|
||||||
print("query_text: ", query_text)
|
print("query_text: ", query_text)
|
||||||
print("schema: ", schema)
|
print("schema: ", schema)
|
||||||
print("current_date: ", current_date)
|
print("current_date: ", current_date)
|
||||||
print("prior_schema_links: ", linking)
|
print("prior_schema_links: ", linking)
|
||||||
|
|
||||||
if linking is not None:
|
if linking is not None:
|
||||||
prior_schema_links = {item['fieldValue']:item['fieldName'] for item in linking}
|
prior_schema_links = {
|
||||||
else:
|
item["fieldValue"]: item["fieldName"] for item in linking
|
||||||
prior_schema_links = {}
|
}
|
||||||
|
else:
|
||||||
|
prior_schema_links = {}
|
||||||
|
|
||||||
model_name = schema['modelName']
|
model_name = schema["modelName"]
|
||||||
fields_list = schema['fieldNameList']
|
fields_list = schema["fieldNameList"]
|
||||||
|
|
||||||
schema_linking_prompt = self.schema_linking_exampler(query_text, model_name, fields_list, prior_schema_links, self.sql_example_selector)
|
schema_linking_prompt = self.schema_linking_exampler(
|
||||||
print("schema_linking_prompt->", schema_linking_prompt)
|
query_text,
|
||||||
schema_link_output = self.llm(schema_linking_prompt)
|
model_name,
|
||||||
schema_link_str = self.schema_link_parse(schema_link_output)
|
fields_list,
|
||||||
|
prior_schema_links,
|
||||||
sql_prompt = self.sql_exampler(query_text, model_name, schema_link_str, current_date, self.sql_example_selector)
|
self.sql_example_selector,
|
||||||
print("sql_prompt->", sql_prompt)
|
)
|
||||||
sql_output = self.llm(sql_prompt)
|
print("schema_linking_prompt->", schema_linking_prompt)
|
||||||
|
schema_link_output = self.llm(schema_linking_prompt)
|
||||||
|
schema_link_str = self.schema_link_parse(schema_link_output)
|
||||||
|
|
||||||
resp = dict()
|
sql_prompt = self.sql_exampler(
|
||||||
resp['query'] = query_text
|
query_text,
|
||||||
resp['model'] = model_name
|
model_name,
|
||||||
resp['fields'] = fields_list
|
schema_link_str,
|
||||||
resp['priorSchemaLinking'] = linking
|
current_date,
|
||||||
resp['dataDate'] = current_date
|
self.sql_example_selector,
|
||||||
|
)
|
||||||
|
print("sql_prompt->", sql_prompt)
|
||||||
|
sql_output = self.llm(sql_prompt)
|
||||||
|
|
||||||
resp['analysisOutput'] = schema_link_output
|
resp = dict()
|
||||||
resp['schemaLinkStr'] = schema_link_str
|
resp["query"] = query_text
|
||||||
|
resp["model"] = model_name
|
||||||
resp['sqlOutput'] = sql_output
|
resp["fields"] = fields_list
|
||||||
|
resp["priorSchemaLinking"] = linking
|
||||||
|
resp["dataDate"] = current_date
|
||||||
|
|
||||||
print("resp: ", resp)
|
resp["analysisOutput"] = schema_link_output
|
||||||
|
resp["schemaLinkStr"] = schema_link_str
|
||||||
|
|
||||||
return resp
|
resp["sqlOutput"] = sql_output
|
||||||
|
|
||||||
def query2sqlcombo(self, query_text: str,
|
print("resp: ", resp)
|
||||||
schema : Union[dict, None] = None,
|
|
||||||
current_date: str = None,
|
|
||||||
linking: Union[List[Mapping[str, str]], None] = None
|
|
||||||
):
|
|
||||||
|
|
||||||
print("query_text: ", query_text)
|
return resp
|
||||||
print("schema: ", schema)
|
|
||||||
print("current_date: ", current_date)
|
|
||||||
print("prior_schema_links: ", linking)
|
|
||||||
|
|
||||||
if linking is not None:
|
def query2sqlcombo(
|
||||||
prior_schema_links = {item['fieldValue']:item['fieldName'] for item in linking}
|
self,
|
||||||
else:
|
query_text: str,
|
||||||
prior_schema_links = {}
|
schema: Union[dict, None] = None,
|
||||||
|
current_date: str = None,
|
||||||
|
linking: Union[List[Mapping[str, str]], None] = None,
|
||||||
|
):
|
||||||
|
|
||||||
model_name = schema['modelName']
|
print("query_text: ", query_text)
|
||||||
fields_list = schema['fieldNameList']
|
print("schema: ", schema)
|
||||||
|
print("current_date: ", current_date)
|
||||||
|
print("prior_schema_links: ", linking)
|
||||||
|
|
||||||
schema_linking_sql_combo_prompt = self.schema_linking_sql_combo_exampler(query_text, model_name, current_date, fields_list,
|
if linking is not None:
|
||||||
prior_schema_links, self.sql_example_selector)
|
prior_schema_links = {
|
||||||
print("schema_linking_sql_combo_prompt->", schema_linking_sql_combo_prompt)
|
item["fieldValue"]: item["fieldName"] for item in linking
|
||||||
schema_linking_sql_combo_output = self.llm(schema_linking_sql_combo_prompt)
|
}
|
||||||
|
else:
|
||||||
|
prior_schema_links = {}
|
||||||
|
|
||||||
schema_linking_str = self.combo_schema_link_parse(schema_linking_sql_combo_output)
|
model_name = schema["modelName"]
|
||||||
sql_str = self.combo_sql_parse(schema_linking_sql_combo_output)
|
fields_list = schema["fieldNameList"]
|
||||||
|
|
||||||
resp = dict()
|
schema_linking_sql_combo_prompt = self.schema_linking_sql_combo_exampler(
|
||||||
resp['query'] = query_text
|
query_text,
|
||||||
resp['model'] = model_name
|
model_name,
|
||||||
resp['fields'] = fields_list
|
current_date,
|
||||||
resp['priorSchemaLinking'] = prior_schema_links
|
fields_list,
|
||||||
resp['dataDate'] = current_date
|
prior_schema_links,
|
||||||
|
self.sql_example_selector,
|
||||||
|
)
|
||||||
|
print("schema_linking_sql_combo_prompt->", schema_linking_sql_combo_prompt)
|
||||||
|
schema_linking_sql_combo_output = self.llm(schema_linking_sql_combo_prompt)
|
||||||
|
|
||||||
resp['analysisOutput'] = schema_linking_sql_combo_output
|
schema_linking_str = self.combo_schema_link_parse(
|
||||||
resp['schemaLinkStr'] = schema_linking_str
|
schema_linking_sql_combo_output
|
||||||
resp['sqlOutput'] = sql_str
|
)
|
||||||
|
sql_str = self.combo_sql_parse(schema_linking_sql_combo_output)
|
||||||
|
|
||||||
print("resp: ", resp)
|
resp = dict()
|
||||||
|
resp["query"] = query_text
|
||||||
|
resp["model"] = model_name
|
||||||
|
resp["fields"] = fields_list
|
||||||
|
resp["priorSchemaLinking"] = prior_schema_links
|
||||||
|
resp["dataDate"] = current_date
|
||||||
|
|
||||||
return resp
|
resp["analysisOutput"] = schema_linking_sql_combo_output
|
||||||
|
resp["schemaLinkStr"] = schema_linking_str
|
||||||
|
resp["sqlOutput"] = sql_str
|
||||||
|
|
||||||
def query2sql_run(self, query_text: str,
|
print("resp: ", resp)
|
||||||
schema : Union[dict, None] = None,
|
|
||||||
current_date: str = None,
|
return resp
|
||||||
linking: Union[List[Mapping[str, str]], None] = None):
|
|
||||||
|
def query2sql_run(
|
||||||
|
self,
|
||||||
|
query_text: str,
|
||||||
|
schema: Union[dict, None] = None,
|
||||||
|
current_date: str = None,
|
||||||
|
linking: Union[List[Mapping[str, str]], None] = None,
|
||||||
|
):
|
||||||
|
|
||||||
|
if self.is_shortcut:
|
||||||
|
return self.query2sqlcombo(query_text, schema, current_date, linking)
|
||||||
|
else:
|
||||||
|
return self.query2sql(query_text, schema, current_date, linking)
|
||||||
|
|
||||||
if self.is_shortcut:
|
|
||||||
return self.query2sqlcombo(query_text, schema, current_date, linking)
|
|
||||||
else:
|
|
||||||
return self.query2sql(query_text, schema, current_date, linking)
|
|
||||||
|
|
||||||
text2sql_agent = Text2DSLAgent()
|
text2sql_agent = Text2DSLAgent()
|
||||||
|
|
||||||
|
|||||||
@@ -13,11 +13,19 @@ from fastapi import FastAPI, HTTPException
|
|||||||
|
|
||||||
from sql.run import text2sql_agent
|
from sql.run import text2sql_agent
|
||||||
|
|
||||||
from preset_retrieval.run import preset_query_retrieval_run, collection as preset_query_collection
|
from preset_retrieval.run import (
|
||||||
from preset_retrieval.preset_query_db import (add2preset_query_collection, update_preset_query_collection,
|
preset_query_retrieval_run,
|
||||||
empty_preset_query_collection, delete_preset_query_by_ids,
|
collection as preset_query_collection,
|
||||||
update_preset_query_collection, get_preset_query_by_ids,
|
)
|
||||||
preset_query_collection_size)
|
from preset_retrieval.preset_query_db import (
|
||||||
|
add2preset_query_collection,
|
||||||
|
update_preset_query_collection,
|
||||||
|
empty_preset_query_collection,
|
||||||
|
delete_preset_query_by_ids,
|
||||||
|
update_preset_query_collection,
|
||||||
|
get_preset_query_by_ids,
|
||||||
|
preset_query_collection_size,
|
||||||
|
)
|
||||||
|
|
||||||
from plugin_call.run import plugin_selection_run
|
from plugin_call.run import plugin_selection_run
|
||||||
|
|
||||||
@@ -27,62 +35,64 @@ from run_config import LLMPARSER_PORT
|
|||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/query2sql/")
|
@app.post("/query2sql/")
|
||||||
async def din_query2sql(query_body: Mapping[str, Any]):
|
async def din_query2sql(query_body: Mapping[str, Any]):
|
||||||
if 'queryText' not in query_body:
|
if "queryText" not in query_body:
|
||||||
raise HTTPException(status_code=400,
|
raise HTTPException(status_code=400, detail="query_text is not in query_body")
|
||||||
detail="query_text is not in query_body")
|
|
||||||
else:
|
else:
|
||||||
query_text = query_body['queryText']
|
query_text = query_body["queryText"]
|
||||||
|
|
||||||
if 'schema' not in query_body:
|
if "schema" not in query_body:
|
||||||
raise HTTPException(status_code=400, detail="schema is not in query_body")
|
raise HTTPException(status_code=400, detail="schema is not in query_body")
|
||||||
else:
|
else:
|
||||||
schema = query_body['schema']
|
schema = query_body["schema"]
|
||||||
|
|
||||||
if 'currentDate' not in query_body:
|
if "currentDate" not in query_body:
|
||||||
raise HTTPException(status_code=400, detail="currentDate is not in query_body")
|
raise HTTPException(status_code=400, detail="currentDate is not in query_body")
|
||||||
else:
|
else:
|
||||||
current_date = query_body['currentDate']
|
current_date = query_body["currentDate"]
|
||||||
|
|
||||||
if 'linking' not in query_body:
|
if "linking" not in query_body:
|
||||||
linking = None
|
linking = None
|
||||||
else:
|
else:
|
||||||
linking = query_body['linking']
|
linking = query_body["linking"]
|
||||||
|
|
||||||
resp = text2sql_agent.query2sql_run(query_text=query_text,
|
resp = text2sql_agent.query2sql_run(
|
||||||
schema=schema, current_date=current_date, linking=linking)
|
query_text=query_text, schema=schema, current_date=current_date, linking=linking
|
||||||
|
)
|
||||||
|
|
||||||
return resp
|
return resp
|
||||||
|
|
||||||
|
|
||||||
@app.post("/query2sql_setting_update/")
|
@app.post("/query2sql_setting_update/")
|
||||||
async def query2sql_setting_update(query_body: Mapping[str, Any]):
|
async def query2sql_setting_update(query_body: Mapping[str, Any]):
|
||||||
if 'sqlExamplars' not in query_body:
|
if "sqlExamplars" not in query_body:
|
||||||
raise HTTPException(status_code=400,
|
raise HTTPException(status_code=400, detail="sqlExamplars is not in query_body")
|
||||||
detail="sqlExamplars is not in query_body")
|
|
||||||
else:
|
else:
|
||||||
sql_examplars = query_body['sqlExamplars']
|
sql_examplars = query_body["sqlExamplars"]
|
||||||
|
|
||||||
if 'exampleNums' not in query_body:
|
if "exampleNums" not in query_body:
|
||||||
raise HTTPException(status_code=400, detail="exampleNums is not in query_body")
|
raise HTTPException(status_code=400, detail="exampleNums is not in query_body")
|
||||||
else:
|
else:
|
||||||
example_nums = query_body['exampleNums']
|
example_nums = query_body["exampleNums"]
|
||||||
|
|
||||||
if 'isShortcut' not in query_body:
|
if "isShortcut" not in query_body:
|
||||||
raise HTTPException(status_code=400, detail="isShortcut is not in query_body")
|
raise HTTPException(status_code=400, detail="isShortcut is not in query_body")
|
||||||
else:
|
else:
|
||||||
is_shortcut = query_body['isShortcut']
|
is_shortcut = query_body["isShortcut"]
|
||||||
|
|
||||||
text2sql_agent.update_examples(sql_examples=sql_examplars, example_nums=example_nums, is_shortcut=is_shortcut)
|
text2sql_agent.update_examples(
|
||||||
|
sql_examples=sql_examplars, example_nums=example_nums, is_shortcut=is_shortcut
|
||||||
|
)
|
||||||
|
|
||||||
return "success"
|
return "success"
|
||||||
|
|
||||||
|
|
||||||
@app.post("/preset_query_retrival/")
|
@app.post("/preset_query_retrival/")
|
||||||
async def preset_query_retrival(query_text_list: List[str], n_results: int = 5):
|
async def preset_query_retrival(query_text_list: List[str], n_results: int = 5):
|
||||||
parsed_retrieval_res_format = preset_query_retrieval_run(preset_query_collection, query_text_list, n_results)
|
parsed_retrieval_res_format = preset_query_retrieval_run(
|
||||||
|
preset_query_collection, query_text_list, n_results
|
||||||
|
)
|
||||||
|
|
||||||
return parsed_retrieval_res_format
|
return parsed_retrieval_res_format
|
||||||
|
|
||||||
@@ -93,27 +103,32 @@ async def preset_query_add(preset_info_list: List[Mapping[str, str]]):
|
|||||||
preset_query_ids = []
|
preset_query_ids = []
|
||||||
|
|
||||||
for preset_info in preset_info_list:
|
for preset_info in preset_info_list:
|
||||||
preset_queries.append(preset_info['preset_query'])
|
preset_queries.append(preset_info["preset_query"])
|
||||||
preset_query_ids.append(preset_info['preset_query_id'])
|
preset_query_ids.append(preset_info["preset_query_id"])
|
||||||
|
|
||||||
add2preset_query_collection(collection=preset_query_collection,
|
add2preset_query_collection(
|
||||||
preset_queries=preset_queries,
|
collection=preset_query_collection,
|
||||||
preset_query_ids=preset_query_ids)
|
preset_queries=preset_queries,
|
||||||
|
preset_query_ids=preset_query_ids,
|
||||||
|
)
|
||||||
|
|
||||||
return "success"
|
return "success"
|
||||||
|
|
||||||
|
|
||||||
@app.post("/preset_query_update/")
|
@app.post("/preset_query_update/")
|
||||||
async def preset_query_update(preset_info_list: List[Mapping[str, str]]):
|
async def preset_query_update(preset_info_list: List[Mapping[str, str]]):
|
||||||
preset_queries = []
|
preset_queries = []
|
||||||
preset_query_ids = []
|
preset_query_ids = []
|
||||||
|
|
||||||
for preset_info in preset_info_list:
|
for preset_info in preset_info_list:
|
||||||
preset_queries.append(preset_info['preset_query'])
|
preset_queries.append(preset_info["preset_query"])
|
||||||
preset_query_ids.append(preset_info['preset_query_id'])
|
preset_query_ids.append(preset_info["preset_query_id"])
|
||||||
|
|
||||||
update_preset_query_collection(collection=preset_query_collection,
|
update_preset_query_collection(
|
||||||
preset_queries=preset_queries,
|
collection=preset_query_collection,
|
||||||
preset_query_ids=preset_query_ids)
|
preset_queries=preset_queries,
|
||||||
|
preset_query_ids=preset_query_ids,
|
||||||
|
)
|
||||||
|
|
||||||
return "success"
|
return "success"
|
||||||
|
|
||||||
@@ -124,39 +139,50 @@ async def preset_query_empty():
|
|||||||
|
|
||||||
return "success"
|
return "success"
|
||||||
|
|
||||||
|
|
||||||
@app.post("/preset_delete_by_ids/")
|
@app.post("/preset_delete_by_ids/")
|
||||||
async def preset_delete_by_ids(preset_query_ids: List[str]):
|
async def preset_delete_by_ids(preset_query_ids: List[str]):
|
||||||
delete_preset_query_by_ids(collection=preset_query_collection, preset_query_ids=preset_query_ids)
|
delete_preset_query_by_ids(
|
||||||
|
collection=preset_query_collection, preset_query_ids=preset_query_ids
|
||||||
|
)
|
||||||
|
|
||||||
return "success"
|
return "success"
|
||||||
|
|
||||||
|
|
||||||
@app.post("/preset_get_by_ids/")
|
@app.post("/preset_get_by_ids/")
|
||||||
async def preset_get_by_ids(preset_query_ids: List[str]):
|
async def preset_get_by_ids(preset_query_ids: List[str]):
|
||||||
preset_queries = get_preset_query_by_ids(collection=preset_query_collection, preset_query_ids=preset_query_ids)
|
preset_queries = get_preset_query_by_ids(
|
||||||
|
collection=preset_query_collection, preset_query_ids=preset_query_ids
|
||||||
|
)
|
||||||
|
|
||||||
return preset_queries
|
return preset_queries
|
||||||
|
|
||||||
|
|
||||||
@app.get("/preset_query_size/")
|
@app.get("/preset_query_size/")
|
||||||
async def preset_query_size():
|
async def preset_query_size():
|
||||||
size = preset_query_collection_size(collection=preset_query_collection)
|
size = preset_query_collection_size(collection=preset_query_collection)
|
||||||
|
|
||||||
return size
|
return size
|
||||||
|
|
||||||
|
|
||||||
@app.post("/plugin_selection/")
|
@app.post("/plugin_selection/")
|
||||||
async def tool_selection(query_body: Mapping[str, Any]):
|
async def tool_selection(query_body: Mapping[str, Any]):
|
||||||
if 'queryText' not in query_body:
|
if "queryText" not in query_body:
|
||||||
raise HTTPException(status_code=400, detail="query_text is not in query_body")
|
raise HTTPException(status_code=400, detail="query_text is not in query_body")
|
||||||
else:
|
else:
|
||||||
query_text = query_body['queryText']
|
query_text = query_body["queryText"]
|
||||||
|
|
||||||
if 'pluginConfigs' not in query_body:
|
if "pluginConfigs" not in query_body:
|
||||||
raise HTTPException(status_code=400, detail="pluginConfigs is not in query_body")
|
raise HTTPException(
|
||||||
|
status_code=400, detail="pluginConfigs is not in query_body"
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
plugin_configs = query_body['pluginConfigs']
|
plugin_configs = query_body["pluginConfigs"]
|
||||||
|
|
||||||
resp = plugin_selection_run(query_text=query_text, plugin_configs=plugin_configs)
|
resp = plugin_selection_run(query_text=query_text, plugin_configs=plugin_configs)
|
||||||
|
|
||||||
return resp
|
return resp
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
uvicorn.run(app, host=LLMPARSER_HOST, port=LLMPARSER_PORT)
|
uvicorn.run(app, host=LLMPARSER_HOST, port=LLMPARSER_PORT)
|
||||||
|
|||||||
@@ -7,13 +7,15 @@ from chromadb.config import Settings
|
|||||||
|
|
||||||
from run_config import CHROMA_DB_PERSIST_PATH
|
from run_config import CHROMA_DB_PERSIST_PATH
|
||||||
|
|
||||||
client = chromadb.Client(Settings(
|
client = chromadb.Client(
|
||||||
chroma_db_impl="duckdb+parquet",
|
Settings(
|
||||||
persist_directory=CHROMA_DB_PERSIST_PATH # Optional, defaults to .chromadb/ in the current directory
|
chroma_db_impl="duckdb+parquet",
|
||||||
))
|
persist_directory=CHROMA_DB_PERSIST_PATH, # Optional, defaults to .chromadb/ in the current directory
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def empty_chroma_collection_2(collection:Collection):
|
def empty_chroma_collection_2(collection: Collection):
|
||||||
collection_name = collection.name
|
collection_name = collection.name
|
||||||
client = collection._client
|
client = collection._client
|
||||||
metadata = collection.metadata
|
metadata = collection.metadata
|
||||||
@@ -21,17 +23,18 @@ def empty_chroma_collection_2(collection:Collection):
|
|||||||
|
|
||||||
client.delete_collection(collection_name)
|
client.delete_collection(collection_name)
|
||||||
|
|
||||||
new_collection = client.get_or_create_collection(name=collection_name,
|
new_collection = client.get_or_create_collection(
|
||||||
metadata=metadata,
|
name=collection_name, metadata=metadata, embedding_function=embedding_function
|
||||||
embedding_function=embedding_function)
|
)
|
||||||
|
|
||||||
size_of_new_collection = new_collection.count()
|
size_of_new_collection = new_collection.count()
|
||||||
|
|
||||||
print(f'Collection {collection_name} emptied. Size of new collection: {size_of_new_collection}')
|
print(
|
||||||
|
f"Collection {collection_name} emptied. Size of new collection: {size_of_new_collection}"
|
||||||
|
)
|
||||||
|
|
||||||
return new_collection
|
return new_collection
|
||||||
|
|
||||||
|
|
||||||
def empty_chroma_collection(collection:Collection):
|
def empty_chroma_collection(collection: Collection):
|
||||||
collection.delete()
|
collection.delete()
|
||||||
|
|
||||||
|
|||||||
@@ -4,5 +4,6 @@ from langchain.llms import OpenAI
|
|||||||
from run_config import MODEL_NAME, OPENAI_API_KEY, TEMPERATURE
|
from run_config import MODEL_NAME, OPENAI_API_KEY, TEMPERATURE
|
||||||
|
|
||||||
|
|
||||||
llm = OpenAI(openai_api_key=OPENAI_API_KEY, model_name=MODEL_NAME,
|
llm = OpenAI(
|
||||||
temperature=TEMPERATURE)
|
openai_api_key=OPENAI_API_KEY, model_name=MODEL_NAME, temperature=TEMPERATURE
|
||||||
|
)
|
||||||
|
|||||||
@@ -9,6 +9,7 @@ from run_config import HF_TEXT2VEC_MODEL_NAME
|
|||||||
|
|
||||||
hg_embedding = HuggingFaceEmbeddings(model_name=HF_TEXT2VEC_MODEL_NAME)
|
hg_embedding = HuggingFaceEmbeddings(model_name=HF_TEXT2VEC_MODEL_NAME)
|
||||||
|
|
||||||
|
|
||||||
class Text2VecEmbeddingFunction(EmbeddingFunction):
|
class Text2VecEmbeddingFunction(EmbeddingFunction):
|
||||||
def __call__(self, texts: Documents) -> Embeddings:
|
def __call__(self, texts: Documents) -> Embeddings:
|
||||||
|
|
||||||
@@ -16,13 +17,8 @@ class Text2VecEmbeddingFunction(EmbeddingFunction):
|
|||||||
|
|
||||||
return embeddings
|
return embeddings
|
||||||
|
|
||||||
def get_embeddings(documents:List[str]) -> List[List[float]]:
|
|
||||||
|
def get_embeddings(documents: List[str]) -> List[List[float]]:
|
||||||
embeddings = hg_embedding.embed_documents(documents)
|
embeddings = hg_embedding.embed_documents(documents)
|
||||||
|
|
||||||
return embeddings
|
return embeddings
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
32
dev/reformat
Executable file
32
dev/reformat
Executable file
@@ -0,0 +1,32 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
#
|
||||||
|
# Licensed to the Apache Software Foundation (ASF) under one or more
|
||||||
|
# contributor license agreements. See the NOTICE file distributed with
|
||||||
|
# this work for additional information regarding copyright ownership.
|
||||||
|
# The ASF licenses this file to You under the Apache License, Version 2.0
|
||||||
|
# (the "License"); you may not use this file except in compliance with
|
||||||
|
# the License. You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
|
||||||
|
set -x
|
||||||
|
|
||||||
|
|
||||||
|
PROFILES="-P "
|
||||||
|
|
||||||
|
# python style checks rely on `black` in path
|
||||||
|
if ! command -v black &> /dev/null
|
||||||
|
then
|
||||||
|
echo "Skip Python lint since 'black' is not available. Please install 'black' by running 'pip install black==22.3.0'"
|
||||||
|
else
|
||||||
|
PROFILES="${PROFILES} spotless-python"
|
||||||
|
fi
|
||||||
|
|
||||||
|
mvn spotless:apply $PROFILES
|
||||||
43
pom.xml
43
pom.xml
@@ -65,6 +65,11 @@
|
|||||||
<mockito-inline.version>4.5.1</mockito-inline.version>
|
<mockito-inline.version>4.5.1</mockito-inline.version>
|
||||||
<jsqlparser.version>4.5</jsqlparser.version>
|
<jsqlparser.version>4.5</jsqlparser.version>
|
||||||
<revision>0.7.5-SNAPSHOT</revision>
|
<revision>0.7.5-SNAPSHOT</revision>
|
||||||
|
<!-- Do not bump spotless plugin version since 2.30.0 is the latest version supports Java 8-->
|
||||||
|
<maven.plugin.spotless.version>2.30.0</maven.plugin.spotless.version>
|
||||||
|
<spotless.python.includes></spotless.python.includes>
|
||||||
|
<!-- Do not bump black version as decided by spotless maven plugin-->
|
||||||
|
<spotless.python.black.version>22.3.0</spotless.python.black.version>
|
||||||
</properties>
|
</properties>
|
||||||
|
|
||||||
<dependencyManagement>
|
<dependencyManagement>
|
||||||
@@ -101,6 +106,15 @@
|
|||||||
</dependencies>
|
</dependencies>
|
||||||
</dependencyManagement>
|
</dependencyManagement>
|
||||||
|
|
||||||
|
<profiles>
|
||||||
|
<profile>
|
||||||
|
<id>spotless-python</id>
|
||||||
|
<properties>
|
||||||
|
<spotless.python.includes>src/**/*.py</spotless.python.includes>
|
||||||
|
</properties>
|
||||||
|
</profile>
|
||||||
|
</profiles>
|
||||||
|
|
||||||
<build>
|
<build>
|
||||||
<plugins>
|
<plugins>
|
||||||
<plugin>
|
<plugin>
|
||||||
@@ -147,6 +161,10 @@
|
|||||||
<groupId>org.apache.maven.plugins</groupId>
|
<groupId>org.apache.maven.plugins</groupId>
|
||||||
<artifactId>maven-checkstyle-plugin</artifactId>
|
<artifactId>maven-checkstyle-plugin</artifactId>
|
||||||
</plugin>
|
</plugin>
|
||||||
|
<plugin>
|
||||||
|
<groupId>com.diffplug.spotless</groupId>
|
||||||
|
<artifactId>spotless-maven-plugin</artifactId>
|
||||||
|
</plugin>
|
||||||
</plugins>
|
</plugins>
|
||||||
<pluginManagement>
|
<pluginManagement>
|
||||||
<plugins>
|
<plugins>
|
||||||
@@ -185,6 +203,31 @@
|
|||||||
</execution>
|
</execution>
|
||||||
</executions>
|
</executions>
|
||||||
</plugin>
|
</plugin>
|
||||||
|
<plugin>
|
||||||
|
<groupId>com.diffplug.spotless</groupId>
|
||||||
|
<artifactId>spotless-maven-plugin</artifactId>
|
||||||
|
<version>${maven.plugin.spotless.version}</version>
|
||||||
|
<configuration>
|
||||||
|
<upToDateChecking>
|
||||||
|
<enabled>true</enabled>
|
||||||
|
</upToDateChecking>
|
||||||
|
<python>
|
||||||
|
<includes>
|
||||||
|
<include>${spotless.python.includes}</include>
|
||||||
|
</includes>
|
||||||
|
<black>
|
||||||
|
<version>${spotless.python.black.version}</version>
|
||||||
|
</black>
|
||||||
|
</python>
|
||||||
|
</configuration>
|
||||||
|
<executions>
|
||||||
|
<execution>
|
||||||
|
<goals>
|
||||||
|
<goal>check</goal>
|
||||||
|
</goals>
|
||||||
|
</execution>
|
||||||
|
</executions>
|
||||||
|
</plugin>
|
||||||
</plugins>
|
</plugins>
|
||||||
</pluginManagement>
|
</pluginManagement>
|
||||||
</build>
|
</build>
|
||||||
|
|||||||
Reference in New Issue
Block a user