(improve)(benchmark) improve benchmark, add analysis of parsing results (#2215)
Some checks failed
supersonic CentOS CI / build (21) (push) Has been cancelled
supersonic mac CI / build (21) (push) Has been cancelled
supersonic ubuntu CI / build (21) (push) Has been cancelled
supersonic windows CI / build (21) (push) Has been cancelled

This commit is contained in:
Antgeek
2025-04-10 08:57:25 +08:00
committed by GitHub
parent 0ab7643299
commit 97710a90c4
2 changed files with 82 additions and 2 deletions

View File

@@ -15,6 +15,68 @@ import requests
import time
import jwt
import traceback
import os
from datetime import datetime
class DataFrameAppender:
def __init__(self,file_name = "output"):
# 定义表头
columns = ['问题', '解析状态', '解析耗时', '执行状态', '执行耗时', '总耗时']
# 创建只有表头的 DataFrame
self.df = pd.DataFrame(columns=columns)
self.file_name = file_name
def append_data(self, new_data):
# 假设 new_data 是一维数组,将其转换为字典
columns = ['问题', '解析状态', '解析耗时', '执行状态', '执行耗时', '总耗时']
new_dict = dict(zip(columns, new_data))
# 使用 loc 方法追加数据
self.df.loc[len(self.df)] = new_dict
def print_analysis_result(self):
# 测试样例总数
total_samples = len(self.df)
# 解析成功数量
parse_success_count = (self.df['解析状态'] == '解析成功').sum()
# 执行成功数量
execute_success_count = (self.df['执行状态'] == '执行成功').sum()
# 解析平均耗时,保留两位小数
avg_parse_time = round(self.df['解析耗时'].mean(), 2)
# 执行平均耗时,保留两位小数
avg_execute_time = round(self.df['执行耗时'].mean(), 2)
# 总平均耗时,保留两位小数
avg_total_time = round(self.df['总耗时'].mean(), 2)
# 最长耗时,保留两位小数
max_time = round(self.df['总耗时'].max(), 2)
# 最短耗时,保留两位小数
min_time = round(self.df['总耗时'].min(), 2)
print(f"测试样例总数 : {total_samples}")
print(f"解析成功数量 : {parse_success_count}")
print(f"执行成功数量 : {execute_success_count}")
print(f"解析平均耗时 : {avg_parse_time}")
print(f"执行平均耗时 : {avg_execute_time}")
print(f"总平均耗时 : {avg_total_time}")
print(f"最长耗时 : {max_time}")
print(f"最短耗时 : {min_time}")
def write_to_csv(self):
# 检查 data 文件夹是否存在,如果不存在则创建
if not os.path.exists('res'):
os.makedirs('res')
# 获取当前时间戳
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
# 生成带时间戳的文件名
file_path = os.path.join('res', f'{self.file_name}_{timestamp}.csv')
self.df.to_csv(file_path, index=False)
print(f"测试结果已保存到 {file_path}")
class BatchTest:
def __init__(self, url, agentId, chatId, userName):
@@ -70,18 +132,35 @@ class BatchTest:
def benchmark(url:str, agentId:str, chatId:str, filePath:str, userName:str):
batch_test = BatchTest(url, agentId, chatId, userName)
df = batch_test.read_question_from_csv(filePath)
appender = DataFrameAppender(os.path.basename(filePath))
for index, row in df.iterrows():
question = row['question']
print('start to ask question:', question)
# 捕获异常,防止程序中断
try:
parse_resp = batch_test.parse(question)
batch_test.execute(agentId, question, parse_resp['data']['queryId'])
parse_status = '解析失败'
if parse_resp.get('data').get('errorMsg') is None:
parse_status = '解析成功'
parse_cost = parse_resp.get('data').get('parseTimeCost').get('parseTime')
execute_resp = batch_test.execute(agentId, question, parse_resp['data']['queryId'])
execute_status = '执行失败'
execute_cost = 0
if parse_status == '解析成功' and execute_resp.get('data').get('errorMsg') is None:
execute_status = '执行成功'
execute_cost = execute_resp.get('data').get('queryTimeCost')
res = [question.replace(',', '#'),parse_status,parse_cost/1000,execute_status,execute_cost/1000,(parse_cost+execute_cost)/1000]
appender.append_data(res)
except Exception as e:
print('error:', e)
traceback.print_exc()
continue
time.sleep(1)
# 打印分析结果
appender.print_analysis_result()
# 分析明细输出
appender.write_to_csv()
if __name__ == '__main__':