mirror of
https://github.com/tencentmusic/supersonic.git
synced 2025-12-13 13:07:32 +00:00
(improvement)(Chat) Move python module from Chat To Headless (#823)
Co-authored-by: jolunoluo
This commit is contained in:
99
headless/python/services/plugin_call/prompt_construct.py
Normal file
99
headless/python/services/plugin_call/prompt_construct.py
Normal file
@@ -0,0 +1,99 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import sys
|
||||
from typing import Any, List, Mapping, Union
|
||||
|
||||
from instances.logging_instance import logger
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
|
||||
def construct_plugin_prompt(tool_config):
|
||||
tool_name = tool_config["name"]
|
||||
tool_description = tool_config["description"]
|
||||
tool_examples = tool_config["examples"]
|
||||
|
||||
prompt = "【工具名称】\n" + tool_name + "\n"
|
||||
prompt += "【工具描述】\n" + tool_description + "\n"
|
||||
|
||||
prompt += "【工具适用问题示例】\n"
|
||||
for example in tool_examples:
|
||||
prompt += example + "\n"
|
||||
return prompt
|
||||
|
||||
|
||||
def construct_plugin_pool_prompt(tool_config_list):
|
||||
tool_explain_list = []
|
||||
for tool_config in tool_config_list:
|
||||
tool_explain = construct_plugin_prompt(tool_config)
|
||||
tool_explain_list.append(tool_explain)
|
||||
|
||||
tool_explain_list_str = "\n\n".join(tool_explain_list)
|
||||
|
||||
return tool_explain_list_str
|
||||
|
||||
|
||||
def construct_task_prompt(query_text, tool_explain_list_str):
|
||||
instruction = """问题为:{query_text}\n请根据问题和工具的描述,选择对应的工具,完成任务。请注意,只能选择1个工具。请一步一步地分析选择工具的原因(每个工具的【工具适用问题示例】是选择的重要参考依据),并给出最终选择,输出格式为json,key为’分析过程‘, ’选择工具‘""".format(
|
||||
query_text=query_text
|
||||
)
|
||||
|
||||
prompt = "工具选择如下:\n\n{tool_explain_list_str}\n\n【任务说明】\n{instruction}".format(
|
||||
instruction=instruction, tool_explain_list_str=tool_explain_list_str
|
||||
)
|
||||
|
||||
return prompt
|
||||
|
||||
|
||||
def plugin_selection_output_parse(llm_output: str) -> Union[Mapping[str, str], None]:
|
||||
try:
|
||||
pattern = r"\{[^{}]+\}"
|
||||
find_result = re.findall(pattern, llm_output)
|
||||
result = find_result[0].strip()
|
||||
|
||||
logger.info("result: {}", result)
|
||||
|
||||
result_dict = json.loads(result)
|
||||
logger.info("result_dict: {}", result_dict)
|
||||
|
||||
key_mapping = {"分析过程": "analysis", "选择工具": "toolSelection"}
|
||||
|
||||
converted_result_dict = {
|
||||
key_mapping[key]: value
|
||||
for key, value in result_dict.items()
|
||||
if key in key_mapping
|
||||
}
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
converted_result_dict = None
|
||||
|
||||
return converted_result_dict
|
||||
|
||||
|
||||
def plugins_config_format_convert(
|
||||
plugin_config_list: List[Mapping[str, Any]]
|
||||
) -> List[Mapping[str, Any]]:
|
||||
plugin_config_list_new = []
|
||||
for plugin_config in plugin_config_list:
|
||||
plugin_config_new = dict()
|
||||
name = plugin_config["name"]
|
||||
description = plugin_config["description"]
|
||||
examples = plugin_config["examples"]
|
||||
parameters = plugin_config["parameters"]
|
||||
|
||||
examples_str = "\n".join(examples)
|
||||
description_new = """{plugin_desc}\n\n例如能够处理如下问题:\n{examples_str}""".format(
|
||||
plugin_desc=description, examples_str=examples_str
|
||||
)
|
||||
|
||||
plugin_config_new["name"] = name
|
||||
plugin_config_new["description"] = description_new
|
||||
plugin_config_new["parameters"] = parameters
|
||||
|
||||
plugin_config_list_new.append(plugin_config_new)
|
||||
|
||||
return plugin_config_list_new
|
||||
28
headless/python/services/plugin_call/run.py
Normal file
28
headless/python/services/plugin_call/run.py
Normal file
@@ -0,0 +1,28 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
import os
|
||||
import sys
|
||||
from typing import Any, List, Mapping, Union
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
from plugin_call.prompt_construct import (
|
||||
construct_plugin_pool_prompt,
|
||||
construct_task_prompt,
|
||||
plugin_selection_output_parse,
|
||||
)
|
||||
from instances.llm_instance import llm
|
||||
|
||||
|
||||
def plugin_selection_run(
|
||||
query_text: str, plugin_configs: List[Mapping[str, Any]]
|
||||
) -> Union[Mapping[str, str], None]:
|
||||
|
||||
tools_prompt = construct_plugin_pool_prompt(plugin_configs)
|
||||
|
||||
task_prompt = construct_task_prompt(query_text, tools_prompt)
|
||||
llm_output = llm(task_prompt)
|
||||
parsed_output = plugin_selection_output_parse(llm_output)
|
||||
|
||||
return parsed_output
|
||||
98
headless/python/services/query_retrieval/retriever.py
Normal file
98
headless/python/services/query_retrieval/retriever.py
Normal file
@@ -0,0 +1,98 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
import os
|
||||
import sys
|
||||
import uuid
|
||||
from typing import Any, List, Mapping, Optional, Union
|
||||
|
||||
import chromadb
|
||||
from chromadb import Client
|
||||
from chromadb.config import Settings
|
||||
from chromadb.api import Collection, Documents, Embeddings
|
||||
from chromadb.api.types import CollectionMetadata
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
from instances.logging_instance import logger
|
||||
from utils.chromadb_utils import (get_chroma_collection_size, query_chroma_collection,
|
||||
parse_retrieval_chroma_collection_query, chroma_collection_query_retrieval_format,
|
||||
get_chroma_collection_by_ids, get_chroma_collection_size,
|
||||
add_chroma_collection, update_chroma_collection, delete_chroma_collection_by_ids,
|
||||
empty_chroma_collection_2)
|
||||
|
||||
from utils.text2vec import Text2VecEmbeddingFunction
|
||||
|
||||
class ChromaCollectionRetriever(object):
|
||||
def __init__(self, collection:Collection):
|
||||
self.collection = collection
|
||||
|
||||
def retrieval_query_run(self, query_texts_list:List[str]=None, query_embeddings:Embeddings=None,
|
||||
filter_condition:Mapping[str,str]=None, n_results:int=5):
|
||||
|
||||
retrieval_res = query_chroma_collection(self.collection, query_texts_list, query_embeddings,
|
||||
filter_condition, n_results)
|
||||
|
||||
parsed_retrieval_res = parse_retrieval_chroma_collection_query(retrieval_res)
|
||||
logger.debug('parsed_retrieval_res: {}', parsed_retrieval_res)
|
||||
parsed_retrieval_res_format = chroma_collection_query_retrieval_format(query_texts_list, query_embeddings, parsed_retrieval_res)
|
||||
logger.debug('parsed_retrieval_res_format: {}', parsed_retrieval_res_format)
|
||||
|
||||
return parsed_retrieval_res_format
|
||||
|
||||
def get_query_by_ids(self, query_ids:List[str]):
|
||||
queries = get_chroma_collection_by_ids(self.collection, query_ids)
|
||||
return queries
|
||||
|
||||
def get_query_size(self):
|
||||
return get_chroma_collection_size(self.collection)
|
||||
|
||||
def add_queries(self, query_text_list:List[str],
|
||||
query_id_list:List[str],
|
||||
metadatas:List[Mapping[str, str]]=None,
|
||||
embeddings:Embeddings=None):
|
||||
add_chroma_collection(self.collection, query_text_list, query_id_list, metadatas, embeddings)
|
||||
return True
|
||||
|
||||
def update_queries(self, query_text_list:List[str],
|
||||
query_id_list:List[str],
|
||||
metadatas:List[Mapping[str, str]]=None,
|
||||
embeddings:Embeddings=None):
|
||||
update_chroma_collection(self.collection, query_text_list, query_id_list, metadatas, embeddings)
|
||||
return True
|
||||
|
||||
def delete_queries_by_ids(self, query_ids:List[str]):
|
||||
delete_chroma_collection_by_ids(self.collection, query_ids)
|
||||
return True
|
||||
|
||||
def empty_query_collection(self):
|
||||
self.collection = empty_chroma_collection_2(self.collection)
|
||||
|
||||
return True
|
||||
|
||||
class CollectionManager(object):
|
||||
def __init__(self, chroma_client:Client, embedding_func: Text2VecEmbeddingFunction, collection_meta: Optional[CollectionMetadata] = None):
|
||||
self.chroma_client = chroma_client
|
||||
self.embedding_func = embedding_func
|
||||
self.collection_meta = collection_meta
|
||||
|
||||
def list_collections(self):
|
||||
collection_list = self.chroma_client.list_collections()
|
||||
return collection_list
|
||||
|
||||
def get_collection(self, collection_name:str):
|
||||
collection = self.chroma_client.get_collection(name=collection_name, embedding_function=self.embedding_func)
|
||||
return collection
|
||||
|
||||
def create_collection(self, collection_name:str):
|
||||
collection = self.chroma_client.create_collection(name=collection_name, embedding_function=self.embedding_func, metadata=self.collection_meta)
|
||||
return collection
|
||||
|
||||
def get_or_create_collection(self, collection_name:str):
|
||||
collection = self.chroma_client.get_or_create_collection(name=collection_name, embedding_function=self.embedding_func, metadata=self.collection_meta)
|
||||
return collection
|
||||
|
||||
def delete_collection(self, collection_name:str):
|
||||
self.chroma_client.delete_collection(collection_name)
|
||||
return True
|
||||
37
headless/python/services/query_retrieval/run.py
Normal file
37
headless/python/services/query_retrieval/run.py
Normal file
@@ -0,0 +1,37 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
import os
|
||||
import sys
|
||||
import uuid
|
||||
from typing import Any, List, Mapping, Optional, Union
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
from instances.logging_instance import logger
|
||||
|
||||
import chromadb
|
||||
from chromadb.config import Settings
|
||||
from chromadb.api import Collection, Documents, Embeddings
|
||||
|
||||
from utils.text2vec import Text2VecEmbeddingFunction
|
||||
from instances.chromadb_instance import client
|
||||
|
||||
from config.config_parse import SOLVED_QUERY_COLLECTION_NAME, PRESET_QUERY_COLLECTION_NAME
|
||||
from retriever import ChromaCollectionRetriever, CollectionManager
|
||||
|
||||
|
||||
emb_func = Text2VecEmbeddingFunction()
|
||||
|
||||
collection_manager = CollectionManager(chroma_client=client, embedding_func=emb_func
|
||||
,collection_meta={"hnsw:space": "cosine"})
|
||||
|
||||
solved_query_collection = collection_manager.get_or_create_collection(collection_name=SOLVED_QUERY_COLLECTION_NAME)
|
||||
preset_query_collection = collection_manager.get_or_create_collection(collection_name=PRESET_QUERY_COLLECTION_NAME)
|
||||
|
||||
|
||||
solved_query_retriever = ChromaCollectionRetriever(solved_query_collection)
|
||||
preset_query_retriever = ChromaCollectionRetriever(preset_query_collection)
|
||||
|
||||
logger.info("init_solved_query_collection_size: {}".format(solved_query_retriever.get_query_size()))
|
||||
logger.info("init_preset_query_collection_size: {}".format(preset_query_retriever.get_query_size()))
|
||||
167
headless/python/services/s2sql/auto_cot.py
Normal file
167
headless/python/services/s2sql/auto_cot.py
Normal file
@@ -0,0 +1,167 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
from typing import Any, List, Mapping, Optional, Union, Tuple
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
from instances.logging_instance import logger
|
||||
from instances.text2vec_instance import emb_func
|
||||
|
||||
from sqlglot import parse_one, exp
|
||||
import numpy as np
|
||||
|
||||
def sql2schema_linking(sql: str):
|
||||
sql_ast = parse_one(sql)
|
||||
|
||||
fields_raw = []
|
||||
table_alias_map = dict()
|
||||
|
||||
literals = []
|
||||
fields = []
|
||||
|
||||
for literal in sql_ast.find_all(exp.Literal):
|
||||
literals.append(literal.output_name)
|
||||
|
||||
for column in sql_ast.find_all(exp.Column):
|
||||
fields_raw.append({
|
||||
'column_table_alias': column.table,
|
||||
'column_name': column.name,
|
||||
})
|
||||
|
||||
for table in sql_ast.find_all(exp.Table):
|
||||
if table.alias not in table_alias_map:
|
||||
table_alias_map[table.alias] = table.name
|
||||
|
||||
logger.debug(f'literals: {literals}')
|
||||
logger.debug(f'fields_raw: {fields_raw}')
|
||||
logger.debug(f'table_alias_map: {table_alias_map}')
|
||||
|
||||
for field in fields_raw:
|
||||
column_table_alias = field['column_table_alias']
|
||||
column_name = field['column_name']
|
||||
|
||||
if column_table_alias.strip() == '':
|
||||
column_table = ''
|
||||
fields.append((column_table, column_name))
|
||||
elif column_table_alias in table_alias_map:
|
||||
column_table = table_alias_map[column_table_alias]
|
||||
fields.append((column_table, column_name))
|
||||
elif column_table_alias in table_alias_map.values():
|
||||
column_table = column_table_alias
|
||||
fields.append((column_table, column_name))
|
||||
else:
|
||||
logger.error(f'column_table_alias: {column_table_alias} not in table_alias_map: {table_alias_map}')
|
||||
raise Exception(f'column_table_alias: {column_table_alias} not in table_alias_map: {table_alias_map}')
|
||||
|
||||
return {
|
||||
'fields': list(set(fields)),
|
||||
'literals': literals
|
||||
}
|
||||
|
||||
|
||||
def get_question_slices(question: str, min_window_size: int, max_window_size: int):
|
||||
assert min_window_size <= max_window_size
|
||||
assert min_window_size > 1
|
||||
assert max_window_size < len(question)+1
|
||||
|
||||
question_slices = []
|
||||
for i in range(len(question)):
|
||||
for j in range(i+1, len(question)+1):
|
||||
if j-i >= min_window_size and j-i <= max_window_size:
|
||||
question_slices.append(question[i:j])
|
||||
|
||||
return question_slices
|
||||
|
||||
|
||||
def schema_linking_match(fields: List[Tuple[str,str]], question: str, min_window_size: int, max_window_size: int):
|
||||
question_slices = get_question_slices(question, min_window_size, max_window_size)
|
||||
assert len(question_slices) > 0
|
||||
logger.debug('question_slices_len:{}'.format(len(question_slices)))
|
||||
logger.debug(f'question_slices: {question_slices}')
|
||||
|
||||
question_slices_embeddings = emb_func(question_slices)
|
||||
fields_embeddings = emb_func([field[1] for field in fields])
|
||||
|
||||
fields_embeddings = np.array(fields_embeddings) # (n_fields, 768)
|
||||
question_slices_embeddings = np.array(question_slices_embeddings) # (n_question_slices, 768)
|
||||
|
||||
question_slices_embeddings_norm = question_slices_embeddings / np.linalg.norm(question_slices_embeddings, axis=1, keepdims=True) # (n_question_slices, 768)
|
||||
question_slices_embeddings_norm_transpose = question_slices_embeddings_norm.T # (768, n_question_slices)
|
||||
|
||||
if len(fields) > 0:
|
||||
fields_embeddings_norm = fields_embeddings / np.linalg.norm(fields_embeddings, axis=1, keepdims=True) # (n_fields, 768)
|
||||
fields_question_slices_similarity = np.matmul(fields_embeddings_norm, question_slices_embeddings_norm_transpose) # (n_fields, n_question_slices)
|
||||
logger.debug('fields_question_slices_similarity_max:{}'.format(np.max(fields_question_slices_similarity, axis=1)))
|
||||
fields_question_slices_argmax = np.argmax(fields_question_slices_similarity, axis=1) # (n_fields, )
|
||||
logger.debug('fields_question_slices_argmax:{}'.format(fields_question_slices_argmax))
|
||||
|
||||
fields_question_slices_pair = []
|
||||
for i in range(len(fields)):
|
||||
if fields[i][0]!="":
|
||||
fields_question_slices_pair.append((fields[i][0]+'.'+fields[i][1], question_slices[fields_question_slices_argmax[i]]))
|
||||
else:
|
||||
fields_question_slices_pair.append((fields[i][1], question_slices[fields_question_slices_argmax[i]]))
|
||||
|
||||
logger.debug(f'fields_question_slices_pair: {fields_question_slices_pair}')
|
||||
else:
|
||||
fields_question_slices_pair = []
|
||||
|
||||
return fields_question_slices_pair
|
||||
|
||||
|
||||
def construct_schema_linking_cot(question:str, fields_question_slices_pair:List[Tuple[str,str]], literals_list:List[str]):
|
||||
cot_intro= """Let’s think step by step. In the question "{question}", we are asked:""".format(question=question)
|
||||
|
||||
schema_linkings_list = []
|
||||
|
||||
fields_cot_template = """"{question_slice}" so we need column = [{field}]"""
|
||||
fields_cot_list = []
|
||||
for field, question_slice in fields_question_slices_pair:
|
||||
fields_cot_list.append(fields_cot_template.format(question_slice=question_slice, field=field))
|
||||
schema_linkings_list.append(field)
|
||||
fields_cot = '\n'.join(fields_cot_list)
|
||||
|
||||
literals_cot_template = """Based on the tables, columns, and Foreign_keys, The set of possible cell values are = [{literals}]. So the Schema_links are:"""
|
||||
literals_cot = literals_cot_template.format(literals=",".join(literals_list))
|
||||
|
||||
schema_linkings_list += literals_list
|
||||
schema_linking_str = '[' + ",".join(schema_linkings_list) + ']'
|
||||
schema_linkings = 'Schema_links: '+ schema_linking_str
|
||||
|
||||
cot = """{cot_intro}""".format(cot_intro=cot_intro)
|
||||
if len(fields_cot_list) > 0:
|
||||
cot += '\n' + fields_cot
|
||||
|
||||
cot += '\n' + literals_cot
|
||||
cot += '\n' + schema_linkings
|
||||
|
||||
return cot, schema_linking_str
|
||||
|
||||
def auto_cot_run(question, sql, min_window_size, max_window_size):
|
||||
sql_entity = sql2schema_linking(sql)
|
||||
logger.debug(f'sql_entity: {sql_entity}')
|
||||
|
||||
fields = sql_entity['fields']
|
||||
literals = sql_entity['literals']
|
||||
|
||||
field_linked_pairs = schema_linking_match(fields, question, min_window_size, max_window_size)
|
||||
logger.debug(f'field_linked_pairs: {field_linked_pairs}')
|
||||
|
||||
auto_schema_linking_cot, auto_schema_linkings = construct_schema_linking_cot(question, field_linked_pairs, literals)
|
||||
logger.debug(f'auto_schema_linking_cot: {auto_schema_linking_cot}')
|
||||
logger.debug(f'auto_schema_linkings: {auto_schema_linkings}')
|
||||
|
||||
return auto_schema_linking_cot, auto_schema_linkings
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
question = "没有获得过奖项的高校有哪几所?"
|
||||
sql = "select 名称 from 高校 where 词条id not in ( select 高校id from 奖项 )"
|
||||
min_window_size = 6
|
||||
max_window_size = 10
|
||||
|
||||
generated_schema_linking_cot, generated_schema_linkings = auto_cot_run(question, sql, min_window_size, max_window_size)
|
||||
83
headless/python/services/s2sql/auto_cot_run.py
Normal file
83
headless/python/services/s2sql/auto_cot_run.py
Normal file
@@ -0,0 +1,83 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
import os
|
||||
import sys
|
||||
from typing import Any, List, Union, Mapping
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
from instances.logging_instance import logger
|
||||
|
||||
from auto_cot import auto_cot_run
|
||||
|
||||
|
||||
|
||||
def transform_sql_example(question:str, current_date:str, table_name:str, field_list: Union[str, List[str]], prior_linkings: Union[str, Mapping[str,str]], prior_exts:str, sql:str=None):
|
||||
db_schema = f"Table: {table_name}, Columns = {field_list}\nForeign_keys: []"
|
||||
|
||||
prior_linkings_pairs = []
|
||||
if isinstance(prior_linkings, str):
|
||||
prior_linkings = prior_linkings.strip('[]')
|
||||
if prior_linkings.strip() == '':
|
||||
prior_linkings = []
|
||||
else:
|
||||
prior_linkings = prior_linkings.split(',')
|
||||
logger.debug(f'prior_linkings: {prior_linkings}')
|
||||
|
||||
for prior_linking in prior_linkings:
|
||||
logger.debug(f'prior_linking: {prior_linking}')
|
||||
entity_value, entity_type = prior_linking.split('->')
|
||||
entity_linking = """’{}‘是一个’{}‘""".format(entity_value, entity_type)
|
||||
prior_linkings_pairs.append(entity_linking)
|
||||
elif isinstance(prior_linkings, Mapping):
|
||||
for entity_value, entity_type in prior_linkings.items():
|
||||
entity_linking = """’{}‘是一个’{}‘""".format(entity_value, entity_type)
|
||||
prior_linkings_pairs.append(entity_linking)
|
||||
|
||||
prior_linkings_str = ','.join(prior_linkings_pairs)
|
||||
|
||||
current_data_str = """当前的日期是{}""".format(current_date)
|
||||
|
||||
question_augmented = """{question} (补充信息:{prior_linking}。{current_date}) (备注: {prior_exts})""".format(question=question, prior_linking=prior_linkings_str, prior_exts=prior_exts, current_date=current_data_str)
|
||||
|
||||
return question_augmented, db_schema, sql
|
||||
|
||||
|
||||
def transform_sql_example_autoCoT_run(examplar_list, min_window_size, max_window_size):
|
||||
transformed_sql_examplar_list = []
|
||||
|
||||
for examplar in examplar_list:
|
||||
question = examplar['question']
|
||||
current_date = examplar['currentDate']
|
||||
table_name = examplar['tableName']
|
||||
field_list = examplar['fieldsList']
|
||||
prior_linkings = examplar['priorSchemaLinks']
|
||||
sql = examplar['sql']
|
||||
if 'priorExts' not in examplar:
|
||||
prior_exts = ''
|
||||
else:
|
||||
prior_exts = examplar['priorExts']
|
||||
|
||||
question_augmented, db_schema, sql = transform_sql_example(question=question, current_date=current_date, table_name=table_name, field_list=field_list, prior_linkings=prior_linkings, prior_exts=prior_exts, sql=sql)
|
||||
logger.debug(f'question_augmented: {question_augmented}')
|
||||
logger.debug(f'db_schema: {db_schema}')
|
||||
logger.debug(f'sql: {sql}')
|
||||
|
||||
generated_schema_linking_cot, generated_schema_linkings = auto_cot_run(question_augmented, sql, min_window_size, max_window_size)
|
||||
|
||||
transformed_sql_examplar = dict()
|
||||
transformed_sql_examplar['question'] = question
|
||||
transformed_sql_examplar['questionAugmented'] = question_augmented
|
||||
transformed_sql_examplar['modelName'] = table_name
|
||||
transformed_sql_examplar['dbSchema'] = db_schema
|
||||
transformed_sql_examplar['sql'] = sql
|
||||
transformed_sql_examplar['generatedSchemaLinkingCoT'] = generated_schema_linking_cot
|
||||
transformed_sql_examplar['generatedSchemaLinkings'] = generated_schema_linkings
|
||||
|
||||
logger.debug(f'transformed_sql_examplar: {transformed_sql_examplar}')
|
||||
|
||||
transformed_sql_examplar_list.append(transformed_sql_examplar)
|
||||
|
||||
return transformed_sql_examplar_list
|
||||
79
headless/python/services/s2sql/constructor.py
Normal file
79
headless/python/services/s2sql/constructor.py
Normal file
@@ -0,0 +1,79 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import os
|
||||
import sys
|
||||
from typing import List, Mapping
|
||||
from chromadb.api import Collection
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
from instances.logging_instance import logger
|
||||
from services.query_retrieval.retriever import ChromaCollectionRetriever
|
||||
|
||||
class FewShotPromptTemplate2(object):
|
||||
def __init__(self, collection:Collection, retrieval_key:str, few_shot_seperator:str = "\n\n") -> None:
|
||||
self.collection = collection
|
||||
self.few_shot_retriever = ChromaCollectionRetriever(self.collection)
|
||||
|
||||
self.retrieval_key = retrieval_key
|
||||
|
||||
self.few_shot_seperator = few_shot_seperator
|
||||
|
||||
def add_few_shot_example(self, example_ids: List[str] , example_units: List[Mapping[str, str]])-> None:
|
||||
query_text_list = []
|
||||
|
||||
for idx, example_unit in enumerate(example_units):
|
||||
query_text_list.append(example_unit[self.retrieval_key])
|
||||
|
||||
self.few_shot_retriever.add_queries(query_text_list=query_text_list, query_id_list=example_ids, metadatas=example_units)
|
||||
|
||||
def update_few_shot_example(self, example_ids: List[str] , example_units: List[Mapping[str, str]])-> None:
|
||||
query_text_list = []
|
||||
|
||||
for idx, example_unit in enumerate(example_units):
|
||||
query_text_list.append(example_unit[self.retrieval_key])
|
||||
|
||||
self.few_shot_retriever.update_queries(query_text_list=query_text_list, query_id_list=example_ids, metadatas=example_units)
|
||||
|
||||
def delete_few_shot_example(self, example_ids: List[str])-> None:
|
||||
self.few_shot_retriever.delete_queries_by_ids(query_ids=example_ids)
|
||||
|
||||
def get_few_shot_example(self, example_ids: List[str]):
|
||||
return self.few_shot_retriever.get_query_by_ids(query_ids=example_ids)
|
||||
|
||||
def count_few_shot_example(self)-> int:
|
||||
return self.few_shot_retriever.get_query_size()
|
||||
|
||||
def reload_few_shot_example(self, example_ids: List[str] , example_units: List[Mapping[str, str]])-> None:
|
||||
logger.info(f"original {self.collection.name} size: {self.few_shot_retriever.get_query_size()}")
|
||||
|
||||
self.few_shot_retriever.empty_query_collection()
|
||||
logger.info(f"emptied {self.collection.name} size: {self.few_shot_retriever.get_query_size()}")
|
||||
|
||||
self.add_few_shot_example(example_ids=example_ids, example_units=example_units)
|
||||
logger.info(f"reloaded {self.collection.name} size: {self.few_shot_retriever.get_query_size()}")
|
||||
|
||||
def _sub_dict(self, d:Mapping[str, str], keys:List[str])-> Mapping[str, str]:
|
||||
return {k:d[k] for k in keys if k in d}
|
||||
|
||||
def retrieve_few_shot_example(self, query_text: str, retrieval_num: int, filter_condition: Mapping[str,str] =None)-> List[Mapping[str, str]]:
|
||||
query_text_list = [query_text]
|
||||
retrieval_res_list = self.few_shot_retriever.retrieval_query_run(query_texts_list=query_text_list,
|
||||
filter_condition=filter_condition, n_results=retrieval_num)
|
||||
retrieval_res_unit_list = retrieval_res_list[0]['retrieval']
|
||||
|
||||
return retrieval_res_unit_list
|
||||
|
||||
def make_few_shot_example_prompt(self, few_shot_template: str, example_keys: List[str],
|
||||
few_shot_example_meta_list: List[Mapping[str, str]])-> str:
|
||||
few_shot_example_str_unit_list = []
|
||||
|
||||
retrieval_metas_list = [self._sub_dict(few_shot_example_meta['metadata'], example_keys) for few_shot_example_meta in few_shot_example_meta_list]
|
||||
|
||||
for meta in retrieval_metas_list:
|
||||
few_shot_example_str_unit_list.append(few_shot_template.format(**meta))
|
||||
|
||||
few_shot_example_str = self.few_shot_seperator.join(few_shot_example_str_unit_list)
|
||||
|
||||
return few_shot_example_str
|
||||
|
||||
40
headless/python/services/s2sql/examples_reload_run.py
Normal file
40
headless/python/services/s2sql/examples_reload_run.py
Normal file
@@ -0,0 +1,40 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
from typing import List, Mapping
|
||||
|
||||
import requests
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
from instances.logging_instance import logger
|
||||
from config.config_parse import (
|
||||
TEXT2DSL_EXAMPLE_NUM, TEXT2DSL_FEWSHOTS_NUM, TEXT2DSL_SELF_CONSISTENCY_NUM,
|
||||
LLMPARSER_HOST, LLMPARSER_PORT,)
|
||||
from few_shot_example.s2sql_exemplar import exemplars as sql_exemplars
|
||||
|
||||
|
||||
def text2dsl_agent_wrapper_setting_update(llm_host:str, llm_port:str,
|
||||
sql_examplars:List[Mapping[str, str]],
|
||||
example_nums:int, fewshot_nums:int, self_consistency_nums:int):
|
||||
|
||||
sql_ids = [str(i) for i in range(0, len(sql_examplars))]
|
||||
|
||||
url = f"http://{llm_host}:{llm_port}/query2sql_setting_update"
|
||||
payload = {
|
||||
"sqlExamplars":sql_examplars, "sqlIds": sql_ids,
|
||||
"exampleNums":example_nums, "fewshotNums":fewshot_nums, "selfConsistencyNums":self_consistency_nums
|
||||
}
|
||||
headers = {'content-type': 'application/json'}
|
||||
response = requests.post(url, data=json.dumps(payload), headers=headers)
|
||||
logger.info(response.text)
|
||||
|
||||
if __name__ == "__main__":
|
||||
text2dsl_agent_wrapper_setting_update(LLMPARSER_HOST,LLMPARSER_PORT,
|
||||
sql_exemplars, TEXT2DSL_EXAMPLE_NUM, TEXT2DSL_FEWSHOTS_NUM, TEXT2DSL_SELF_CONSISTENCY_NUM)
|
||||
|
||||
|
||||
59
headless/python/services/s2sql/output_parser.py
Normal file
59
headless/python/services/s2sql/output_parser.py
Normal file
@@ -0,0 +1,59 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
import re
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
from instances.logging_instance import logger
|
||||
|
||||
|
||||
def schema_link_parse(schema_link_output: str):
|
||||
try:
|
||||
schema_link_output = schema_link_output.strip()
|
||||
pattern = r'Schema_links:(.*)'
|
||||
schema_link_output = re.findall(pattern, schema_link_output, re.DOTALL)[0].strip()
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
schema_link_output = None
|
||||
|
||||
return schema_link_output
|
||||
|
||||
def combo_schema_link_parse(schema_linking_sql_combo_output: str):
|
||||
try:
|
||||
schema_linking_sql_combo_output = schema_linking_sql_combo_output.strip()
|
||||
pattern = r'Schema_links:(\[.*?\])|Schema_links: (\[.*?\])'
|
||||
schema_links_match = re.search(pattern, schema_linking_sql_combo_output)
|
||||
|
||||
if schema_links_match.group(1):
|
||||
schema_links = schema_links_match.group(1)
|
||||
elif schema_links_match.group(2):
|
||||
schema_links = schema_links_match.group(2)
|
||||
else:
|
||||
schema_links = None
|
||||
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
schema_links = None
|
||||
|
||||
return schema_links
|
||||
|
||||
def combo_sql_parse(schema_linking_sql_combo_output: str):
|
||||
try:
|
||||
schema_linking_sql_combo_output = schema_linking_sql_combo_output.strip()
|
||||
pattern = r'SQL:(.*)'
|
||||
sql_match = re.search(pattern, schema_linking_sql_combo_output)
|
||||
|
||||
if sql_match:
|
||||
sql = sql_match.group(1)
|
||||
else:
|
||||
sql = None
|
||||
except Exception as e:
|
||||
logger.exception(e)
|
||||
sql = None
|
||||
|
||||
return sql
|
||||
|
||||
63
headless/python/services/s2sql/run.py
Normal file
63
headless/python/services/s2sql/run.py
Normal file
@@ -0,0 +1,63 @@
|
||||
# -*- coding:utf-8 -*-
|
||||
|
||||
import asyncio
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
import json
|
||||
|
||||
from s2sql.constructor import FewShotPromptTemplate2
|
||||
from s2sql.sql_agent import Text2DSLAgent, Text2DSLAgentAutoCoT, Text2DSLAgentWrapper
|
||||
|
||||
from instances.llm_instance import llm
|
||||
from instances.chromadb_instance import client as chromadb_client
|
||||
from instances.logging_instance import logger
|
||||
from instances.text2vec_instance import emb_func
|
||||
|
||||
from few_shot_example.s2sql_exemplar import exemplars as sql_exemplars
|
||||
from config.config_parse import (TEXT2DSLAGENT_COLLECTION_NAME, TEXT2DSLAGENTACT_COLLECTION_NAME,
|
||||
TEXT2DSL_EXAMPLE_NUM, TEXT2DSL_FEWSHOTS_NUM, TEXT2DSL_SELF_CONSISTENCY_NUM,
|
||||
ACT_MIN_WINDOWN_SIZE, ACT_MAX_WINDOWN_SIZE)
|
||||
|
||||
|
||||
text2dsl_agent_collection = chromadb_client.get_or_create_collection(name=TEXT2DSLAGENT_COLLECTION_NAME,
|
||||
embedding_function=emb_func,
|
||||
metadata={"hnsw:space": "cosine"})
|
||||
text2dsl_agent_act_collection = chromadb_client.get_or_create_collection(name=TEXT2DSLAGENTACT_COLLECTION_NAME,
|
||||
embedding_function=emb_func,
|
||||
metadata={"hnsw:space": "cosine"})
|
||||
|
||||
text2dsl_agent_example_prompter = FewShotPromptTemplate2(collection=text2dsl_agent_collection,
|
||||
retrieval_key="question",
|
||||
few_shot_seperator='\n\n')
|
||||
text2dsl_agent_act_example_prompter = FewShotPromptTemplate2(collection=text2dsl_agent_act_collection,
|
||||
retrieval_key="question",
|
||||
few_shot_seperator='\n\n')
|
||||
|
||||
text2sql_agent = Text2DSLAgent(num_fewshots=TEXT2DSL_FEWSHOTS_NUM, num_examples=TEXT2DSL_EXAMPLE_NUM, num_self_consistency=TEXT2DSL_SELF_CONSISTENCY_NUM,
|
||||
sql_example_prompter=text2dsl_agent_example_prompter, llm=llm)
|
||||
text2sql_agent_autoCoT = Text2DSLAgentAutoCoT(num_fewshots=TEXT2DSL_FEWSHOTS_NUM, num_examples=TEXT2DSL_EXAMPLE_NUM, num_self_consistency=TEXT2DSL_SELF_CONSISTENCY_NUM,
|
||||
sql_example_prompter=text2dsl_agent_act_example_prompter, llm=llm,
|
||||
auto_cot_min_window_size=ACT_MIN_WINDOWN_SIZE, auto_cot_max_window_size=ACT_MAX_WINDOWN_SIZE)
|
||||
|
||||
sql_ids = [str(i) for i in range(0, len(sql_exemplars))]
|
||||
text2sql_agent.reload_setting(sql_ids, sql_exemplars, TEXT2DSL_EXAMPLE_NUM, TEXT2DSL_FEWSHOTS_NUM, TEXT2DSL_SELF_CONSISTENCY_NUM)
|
||||
|
||||
if text2sql_agent_autoCoT.count_examples()==0:
|
||||
source_dir_path = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
example_dir_path = os.path.join(source_dir_path, 'few_shot_example')
|
||||
example_json_file = os.path.join(example_dir_path, 's2sql_exemplar3_transformed.json.json')
|
||||
with open(example_json_file, 'r', encoding='utf-8') as f:
|
||||
transformed_sql_examplar_list = json.load(f)
|
||||
|
||||
transformed_sql_examplar_ids = [str(i) for i in range(0, len(transformed_sql_examplar_list))]
|
||||
text2sql_agent_autoCoT.reload_setting_autoCoT(transformed_sql_examplar_ids, transformed_sql_examplar_list, TEXT2DSL_EXAMPLE_NUM, TEXT2DSL_FEWSHOTS_NUM, TEXT2DSL_SELF_CONSISTENCY_NUM)
|
||||
|
||||
|
||||
text2sql_agent_router = Text2DSLAgentWrapper(sql_agent_act=text2sql_agent_autoCoT)
|
||||
|
||||
812
headless/python/services/s2sql/sql_agent.py
Normal file
812
headless/python/services/s2sql/sql_agent.py
Normal file
@@ -0,0 +1,812 @@
|
||||
import os
|
||||
import sys
|
||||
from typing import List, Union, Mapping, Any
|
||||
from collections import Counter
|
||||
import random
|
||||
import asyncio
|
||||
from enum import Enum
|
||||
|
||||
from langchain.llms.base import BaseLLM
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
from instances.logging_instance import logger
|
||||
|
||||
from s2sql.constructor import FewShotPromptTemplate2
|
||||
from s2sql.output_parser import schema_link_parse, combo_schema_link_parse, combo_sql_parse
|
||||
from s2sql.auto_cot_run import transform_sql_example, transform_sql_example_autoCoT_run
|
||||
|
||||
|
||||
class Text2DSLAgentBase(object):
|
||||
def __init__(self, num_fewshots:int, num_examples:int, num_self_consistency:int,
|
||||
sql_example_prompter:FewShotPromptTemplate2, llm: BaseLLM) -> None:
|
||||
self.num_fewshots = num_fewshots
|
||||
self.num_examples = num_examples
|
||||
assert self.num_fewshots <= self.num_examples
|
||||
self.num_self_consistency = num_self_consistency
|
||||
|
||||
self.llm = llm
|
||||
self.sql_example_prompter = sql_example_prompter
|
||||
|
||||
def get_examples_candidates(self, question: str, filter_condition: Mapping[str, str], num_examples: int)->List[Mapping[str, str]]:
|
||||
few_shot_example_meta_list = self.sql_example_prompter.retrieve_few_shot_example(question, num_examples, filter_condition)
|
||||
|
||||
if len(few_shot_example_meta_list) == num_examples:
|
||||
return few_shot_example_meta_list
|
||||
elif len(few_shot_example_meta_list) < num_examples:
|
||||
logger.info(f"few_shot_example_meta_list size: {len(few_shot_example_meta_list)} < num_examples: {num_examples}")
|
||||
existed_id_set = set([item['id'] for item in few_shot_example_meta_list])
|
||||
extra_few_shot_example_meta_list = self.sql_example_prompter.retrieve_few_shot_example(query_text=question, retrieval_num=num_examples, filter_condition=None)
|
||||
|
||||
for item in extra_few_shot_example_meta_list:
|
||||
if item['id'] not in existed_id_set:
|
||||
few_shot_example_meta_list.append(item)
|
||||
existed_id_set.add(item['id'])
|
||||
if len(few_shot_example_meta_list) == num_examples:
|
||||
break
|
||||
|
||||
logger.info(f"few_shot_example_meta_list size: {len(few_shot_example_meta_list)} = num_examples: {num_examples}")
|
||||
return few_shot_example_meta_list
|
||||
else:
|
||||
logger.info(f"few_shot_example_meta_list size: {len(few_shot_example_meta_list)} > num_examples: {num_examples}")
|
||||
few_shot_example_meta_list = few_shot_example_meta_list[:num_examples]
|
||||
return few_shot_example_meta_list
|
||||
|
||||
def get_fewshot_example_combos(self, example_meta_list:List[Mapping[str, str]], num_fewshots:int)-> List[List[Mapping[str, str]]]:
|
||||
fewshot_example_list = []
|
||||
for i in range(0, self.num_self_consistency):
|
||||
random.shuffle(example_meta_list)
|
||||
fewshot_example_list.append(example_meta_list[:num_fewshots])
|
||||
|
||||
return fewshot_example_list
|
||||
|
||||
def self_consistency_vote(self, output_res_pool:List[str]):
|
||||
output_res_counts = Counter(output_res_pool)
|
||||
output_res_max = output_res_counts.most_common(1)[0][0]
|
||||
total_output_num = len(output_res_pool)
|
||||
|
||||
vote_percentage = {k: (v/total_output_num) for k,v in output_res_counts.items()}
|
||||
|
||||
return output_res_max, vote_percentage
|
||||
|
||||
def schema_linking_list_str_unify(self, schema_linking_list: List[str])-> List[str]:
|
||||
schema_linking_list_unify = []
|
||||
for schema_linking_str in schema_linking_list:
|
||||
schema_linking_str_unify = ','.join(sorted([item.strip() for item in schema_linking_str.strip('[]').split(',')]))
|
||||
schema_linking_str_unify = f'[{schema_linking_str_unify}]'
|
||||
schema_linking_list_unify.append(schema_linking_str_unify)
|
||||
|
||||
return schema_linking_list_unify
|
||||
|
||||
class Text2DSLAgentAutoCoT(Text2DSLAgentBase):
|
||||
def __init__(self, num_fewshots:int, num_examples:int, num_self_consistency:int,
|
||||
sql_example_prompter:FewShotPromptTemplate2, llm: BaseLLM,
|
||||
auto_cot_min_window_size: int, auto_cot_max_window_size: int):
|
||||
super().__init__(num_fewshots, num_examples, num_self_consistency, sql_example_prompter, llm)
|
||||
|
||||
assert auto_cot_min_window_size <= auto_cot_max_window_size
|
||||
self.auto_cot_min_window_size = auto_cot_min_window_size
|
||||
self.auto_cot_max_window_size = auto_cot_max_window_size
|
||||
|
||||
def reload_setting(self, sql_example_ids: List[str], sql_example_units: List[Mapping[str,str]], num_examples:int, num_fewshots:int, num_self_consistency:int):
|
||||
self.num_fewshots = num_fewshots
|
||||
self.num_examples = num_examples
|
||||
assert self.num_fewshots <= self.num_examples
|
||||
self.num_self_consistency = num_self_consistency
|
||||
assert self.num_self_consistency >= 1
|
||||
|
||||
new_sql_example_unit_list = transform_sql_example_autoCoT_run(sql_example_units, self.auto_cot_min_window_size, self.auto_cot_max_window_size)
|
||||
self.sql_example_prompter.reload_few_shot_example(sql_example_ids, new_sql_example_unit_list)
|
||||
|
||||
def reload_setting_autoCoT(self, sql_example_ids: List[str], auto_cot_sql_example_units: List[Mapping[str,str]], num_examples:int, num_fewshots:int, num_self_consistency:int):
|
||||
self.num_fewshots = num_fewshots
|
||||
self.num_examples = num_examples
|
||||
assert self.num_fewshots <= self.num_examples
|
||||
self.num_self_consistency = num_self_consistency
|
||||
assert self.num_self_consistency >= 1
|
||||
|
||||
self.sql_example_prompter.reload_few_shot_example(sql_example_ids, auto_cot_sql_example_units)
|
||||
|
||||
def add_examples(self, sql_example_ids: List[str], sql_example_units: List[Mapping[str,str]]):
|
||||
new_sql_example_unit_list = transform_sql_example_autoCoT_run(sql_example_units, self.auto_cot_min_window_size, self.auto_cot_max_window_size)
|
||||
self.sql_example_prompter.add_few_shot_example(sql_example_ids, new_sql_example_unit_list)
|
||||
|
||||
def update_examples(self, sql_example_ids: List[str], sql_example_units: List[Mapping[str,str]]):
|
||||
new_sql_example_unit_list = transform_sql_example_autoCoT_run(sql_example_units, self.auto_cot_min_window_size, self.auto_cot_max_window_size)
|
||||
self.sql_example_prompter.update_few_shot_example(sql_example_ids, new_sql_example_unit_list)
|
||||
|
||||
def delete_examples(self, sql_example_ids: List[str]):
|
||||
self.sql_example_prompter.delete_few_shot_example(sql_example_ids)
|
||||
|
||||
def count_examples(self):
|
||||
return self.sql_example_prompter.count_few_shot_example()
|
||||
|
||||
def get_examples(self, sql_example_ids: List[str]):
|
||||
return self.sql_example_prompter.get_few_shot_example(sql_example_ids)
|
||||
|
||||
def generate_schema_linking_prompt(self, question: str, current_date:str, domain_name: str, fields_list: List[str],
|
||||
prior_schema_links: Mapping[str,str], prior_exts:str, fewshot_example_list:List[Mapping[str, str]])-> str:
|
||||
|
||||
instruction = "# Find the schema_links for generating SQL queries for each question based on the database schema and Foreign keys."
|
||||
|
||||
schema_linking_example_keys = ["questionAugmented", "dbSchema", "generatedSchemaLinkingCoT"]
|
||||
schema_linking_example_template = "{dbSchema}\nQ: {questionAugmented}\nA: {generatedSchemaLinkingCoT}"
|
||||
schema_linking_fewshot_prompt = self.sql_example_prompter.make_few_shot_example_prompt(few_shot_template=schema_linking_example_template,
|
||||
example_keys=schema_linking_example_keys,
|
||||
few_shot_example_meta_list=fewshot_example_list)
|
||||
|
||||
question_augmented, db_schema, _ = transform_sql_example(question, current_date, domain_name, fields_list, prior_schema_links, prior_exts)
|
||||
new_case_template = """{dbSchema}\nQ: {questionAugmented1}\nA: Let’s think step by step. In the question "{questionAugmented2}", we are asked:"""
|
||||
new_case_prompt = new_case_template.format(dbSchema=db_schema, questionAugmented1=question_augmented, questionAugmented2=question_augmented)
|
||||
|
||||
schema_linking_prompt = instruction + '\n\n' + schema_linking_fewshot_prompt + '\n\n' + new_case_prompt
|
||||
|
||||
logger.info(f'schema_linking_prompt: {schema_linking_prompt}')
|
||||
return schema_linking_prompt
|
||||
|
||||
|
||||
def generate_schema_linking_prompt_pool(self, question: str, current_date:str, domain_name: str, fields_list: List[str],
|
||||
prior_schema_links: Mapping[str,str], prior_exts:str, fewshot_example_list_pool:List[List[Mapping[str, str]]])-> List[str]:
|
||||
schema_linking_prompt_pool = []
|
||||
for fewshot_example_list in fewshot_example_list_pool:
|
||||
schema_linking_prompt = self.generate_schema_linking_prompt(question, current_date, domain_name, fields_list, prior_schema_links, prior_exts, fewshot_example_list)
|
||||
schema_linking_prompt_pool.append(schema_linking_prompt)
|
||||
|
||||
return schema_linking_prompt_pool
|
||||
|
||||
def generate_sql_prompt(self, question: str, domain_name: str,fields_list: List[str],
|
||||
schema_link_str: str, current_date: str, prior_schema_links: Mapping[str,str], prior_exts:str,
|
||||
fewshot_example_list:List[Mapping[str, str]])-> str:
|
||||
|
||||
instruction = "# Use the the schema links to generate the SQL queries for each of the questions."
|
||||
sql_example_keys = ["questionAugmented", "dbSchema", "generatedSchemaLinkings", "sql"]
|
||||
sql_example_template = "{dbSchema}\nQ: {questionAugmented}\nSchema_links: {generatedSchemaLinkings}\nSQL: {sql}"
|
||||
|
||||
sql_example_fewshot_prompt = self.sql_example_prompter.make_few_shot_example_prompt(few_shot_template=sql_example_template,
|
||||
example_keys=sql_example_keys,
|
||||
few_shot_example_meta_list=fewshot_example_list)
|
||||
|
||||
question_augmented, db_schema, _ = transform_sql_example(question, current_date, domain_name, fields_list, prior_schema_links, prior_exts)
|
||||
new_case_template = "{dbSchema}\nQ: {questionAugmented}\nSchema_links: {schemaLinkings}\nSQL: "
|
||||
new_case_prompt = new_case_template.format(dbSchema=db_schema, questionAugmented=question_augmented, schemaLinkings=schema_link_str)
|
||||
|
||||
sql_example_prompt = instruction + '\n\n' + sql_example_fewshot_prompt + '\n\n' + new_case_prompt
|
||||
|
||||
logger.info(f'sql_example_prompt: {sql_example_prompt}')
|
||||
return sql_example_prompt
|
||||
|
||||
def generate_sql_prompt_pool(self, question: str, domain_name: str,fields_list: List[str],
|
||||
schema_link_str_pool: List[str], current_date: str, prior_schema_links: Mapping[str,str], prior_exts:str,
|
||||
fewshot_example_list_pool:List[List[Mapping[str, str]]])-> List[str]:
|
||||
sql_prompt_pool = []
|
||||
for schema_link_str, fewshot_example_list in zip(schema_link_str_pool, fewshot_example_list_pool):
|
||||
sql_prompt = self.generate_sql_prompt(question, domain_name, fields_list, schema_link_str, current_date, prior_schema_links, prior_exts, fewshot_example_list)
|
||||
sql_prompt_pool.append(sql_prompt)
|
||||
|
||||
return sql_prompt_pool
|
||||
|
||||
def generate_schema_linking_sql_prompt(self, question: str, current_date:str, domain_name: str, fields_list: List[str],
|
||||
prior_schema_links: Mapping[str,str], prior_exts:str, fewshot_example_list:List[Mapping[str, str]]):
|
||||
|
||||
instruction = "# Find the schema_links for generating SQL queries for each question based on the database schema and Foreign keys. Then use the the schema links to generate the SQL queries for each of the questions."
|
||||
|
||||
example_keys = ["questionAugmented", "dbSchema", "generatedSchemaLinkingCoT","sql"]
|
||||
example_template = "{dbSchema}\nQ: {questionAugmented}\nA: {generatedSchemaLinkingCoT}\nSQL: {sql}"
|
||||
fewshot_prompt = self.sql_example_prompter.make_few_shot_example_prompt(few_shot_template=example_template,
|
||||
example_keys=example_keys,
|
||||
few_shot_example_meta_list=fewshot_example_list)
|
||||
|
||||
question_augmented, db_schema, _ = transform_sql_example(question, current_date, domain_name, fields_list, prior_schema_links, prior_exts)
|
||||
new_case_template = """{dbSchema}\nQ: {questionAugmented1}\nA: Let’s think step by step. In the question "{questionAugmented2}", we are asked:"""
|
||||
new_case_prompt = new_case_template.format(dbSchema=db_schema, questionAugmented1=question_augmented, questionAugmented2=question_augmented)
|
||||
|
||||
prompt = instruction + '\n\n' + fewshot_prompt + '\n\n' + new_case_prompt
|
||||
|
||||
logger.info(f'schema_linking_sql_prompt: {prompt}')
|
||||
return prompt
|
||||
|
||||
def generate_schema_linking_sql_prompt_pool(self, question: str, current_date:str, domain_name: str, fields_list: List[str],
|
||||
prior_schema_links: Mapping[str,str], prior_exts:str, fewshot_example_list_pool:List[List[Mapping[str, str]]])-> List[str]:
|
||||
schema_linking_sql_prompt_pool = []
|
||||
for fewshot_example_list in fewshot_example_list_pool:
|
||||
schema_linking_sql_prompt = self.generate_schema_linking_sql_prompt(question, current_date, domain_name, fields_list, prior_schema_links, prior_exts, fewshot_example_list)
|
||||
schema_linking_sql_prompt_pool.append(schema_linking_sql_prompt)
|
||||
|
||||
return schema_linking_sql_prompt_pool
|
||||
|
||||
async def async_query2sql(self, question: str, filter_condition: Mapping[str,str],
|
||||
model_name: str, fields_list: List[str],
|
||||
current_date: str, prior_schema_links: Mapping[str,str], prior_exts: str):
|
||||
logger.info("question: {}".format(question))
|
||||
logger.info("filter_condition: {}".format(filter_condition))
|
||||
logger.info("model_name: {}".format(model_name))
|
||||
logger.info("fields_list: {}".format(fields_list))
|
||||
logger.info("current_date: {}".format(current_date))
|
||||
logger.info("prior_schema_links: {}".format(prior_schema_links))
|
||||
logger.info("prior_exts: {}".format(prior_exts))
|
||||
|
||||
fewshot_example_meta_list = self.get_examples_candidates(question, filter_condition, self.num_examples)
|
||||
schema_linking_prompt = self.generate_schema_linking_prompt(question, current_date, model_name, fields_list, prior_schema_links, prior_exts, fewshot_example_meta_list)
|
||||
logger.debug("schema_linking_prompt->{}".format(schema_linking_prompt))
|
||||
schema_link_output = await self.llm._call_async(schema_linking_prompt)
|
||||
logger.debug("schema_link_output->{}".format(schema_link_output))
|
||||
|
||||
schema_link_str = schema_link_parse(schema_link_output)
|
||||
logger.debug("schema_link_str->{}".format(schema_link_str))
|
||||
|
||||
sql_prompt = self.generate_sql_prompt(question, model_name, fields_list, schema_link_str, current_date, prior_schema_links, prior_exts, fewshot_example_meta_list)
|
||||
logger.debug("sql_prompt->{}".format(sql_prompt))
|
||||
sql_output = await self.llm._call_async(sql_prompt)
|
||||
|
||||
resp = dict()
|
||||
resp['question'] = question
|
||||
resp['model'] = model_name
|
||||
resp['fields'] = fields_list
|
||||
resp['priorSchemaLinking'] = prior_schema_links
|
||||
resp['priorExts'] = prior_exts
|
||||
resp['currentDate'] = current_date
|
||||
|
||||
resp['prompt'] = [schema_linking_prompt+'\n\n'+sql_prompt]
|
||||
|
||||
resp['schemaLinkingOutput'] = schema_link_output
|
||||
resp['schemaLinkStr'] = schema_link_str
|
||||
|
||||
resp['sqlOutput'] = sql_output
|
||||
|
||||
logger.info("resp: {}".format(resp))
|
||||
|
||||
return resp
|
||||
|
||||
async def async_query2sql_shortcut(self, question: str, filter_condition: Mapping[str,str],
|
||||
model_name: str, fields_list: List[str],
|
||||
current_date: str, prior_schema_links: Mapping[str,str], prior_exts: str):
|
||||
logger.info("question: {}".format(question))
|
||||
logger.info("filter_condition: {}".format(filter_condition))
|
||||
logger.info("model_name: {}".format(model_name))
|
||||
logger.info("fields_list: {}".format(fields_list))
|
||||
logger.info("current_date: {}".format(current_date))
|
||||
logger.info("prior_schema_links: {}".format(prior_schema_links))
|
||||
logger.info("prior_exts: {}".format(prior_exts))
|
||||
|
||||
fewshot_example_meta_list = self.get_examples_candidates(question, filter_condition, self.num_examples)
|
||||
schema_linking_sql_shortcut_prompt = self.generate_schema_linking_sql_prompt(question, current_date, model_name, fields_list, prior_schema_links, prior_exts, fewshot_example_meta_list)
|
||||
logger.debug("schema_linking_sql_shortcut_prompt->{}".format(schema_linking_sql_shortcut_prompt))
|
||||
schema_linking_sql_shortcut_output = await self.llm._call_async(schema_linking_sql_shortcut_prompt)
|
||||
logger.debug("schema_linking_sql_shortcut_output->{}".format(schema_linking_sql_shortcut_output))
|
||||
|
||||
schema_linking_str = combo_schema_link_parse(schema_linking_sql_shortcut_output)
|
||||
sql_str = combo_sql_parse(schema_linking_sql_shortcut_output)
|
||||
|
||||
resp = dict()
|
||||
resp['question'] = question
|
||||
resp['model'] = model_name
|
||||
resp['fields'] = fields_list
|
||||
resp['priorSchemaLinking'] = prior_schema_links
|
||||
resp['priorExts'] = prior_exts
|
||||
resp['currentDate'] = current_date
|
||||
|
||||
resp['prompt'] = [schema_linking_sql_shortcut_prompt]
|
||||
|
||||
resp['schemaLinkingComboOutput'] = schema_linking_sql_shortcut_output
|
||||
resp['schemaLinkStr'] = schema_linking_str
|
||||
resp['sqlOutput'] = sql_str
|
||||
|
||||
logger.info("resp: {}".format(resp))
|
||||
|
||||
return resp
|
||||
|
||||
async def generate_schema_linking_tasks(self, question: str, model_name: str, fields_list: List[str],
|
||||
current_date: str, prior_schema_links: Mapping[str,str], prior_exts: str, fewshot_example_list_combo:List[List[Mapping[str, str]]]):
|
||||
|
||||
schema_linking_prompt_pool = self.generate_schema_linking_prompt_pool(question, current_date, model_name, fields_list, prior_schema_links, prior_exts, fewshot_example_list_combo)
|
||||
logger.debug("schema_linking_prompt_pool->{}".format(schema_linking_prompt_pool))
|
||||
schema_linking_output_pool = await asyncio.gather(*[self.llm._call_async(schema_linking_prompt) for schema_linking_prompt in schema_linking_prompt_pool])
|
||||
logger.debug("schema_linking_output_pool->{}".format(schema_linking_output_pool))
|
||||
|
||||
schema_linking_str_pool = [schema_link_parse(schema_linking_output) for schema_linking_output in schema_linking_output_pool]
|
||||
|
||||
return schema_linking_str_pool, schema_linking_output_pool, schema_linking_prompt_pool
|
||||
|
||||
async def generate_sql_tasks(self, question: str, model_name: str, fields_list: List[str], schema_link_str_pool: List[str],
|
||||
current_date: str, prior_schema_links: Mapping[str,str], prior_exts: str, fewshot_example_list_combo:List[List[Mapping[str, str]]]):
|
||||
|
||||
sql_prompt_pool = self.generate_sql_prompt_pool(question, model_name, fields_list, schema_link_str_pool, current_date, prior_schema_links, prior_exts, fewshot_example_list_combo)
|
||||
logger.debug("sql_prompt_pool->{}".format(sql_prompt_pool))
|
||||
sql_output_pool = await asyncio.gather(*[self.llm._call_async(sql_prompt) for sql_prompt in sql_prompt_pool])
|
||||
logger.debug("sql_output_pool->{}".format(sql_output_pool))
|
||||
|
||||
return sql_output_pool, sql_prompt_pool
|
||||
|
||||
async def generate_schema_linking_sql_tasks(self, question: str, model_name: str, fields_list: List[str],
|
||||
current_date: str, prior_schema_links: Mapping[str,str], prior_exts: str, fewshot_example_list_combo:List[List[Mapping[str, str]]]):
|
||||
schema_linking_sql_prompt_pool = self.generate_schema_linking_sql_prompt_pool(question, current_date, model_name, fields_list, prior_schema_links, prior_exts, fewshot_example_list_combo)
|
||||
schema_linking_sql_output_task_pool = [self.llm._call_async(schema_linking_sql_prompt) for schema_linking_sql_prompt in schema_linking_sql_prompt_pool]
|
||||
schema_linking_sql_output_res_pool = await asyncio.gather(*schema_linking_sql_output_task_pool)
|
||||
logger.debug("schema_linking_sql_output_res_pool->{}".format(schema_linking_sql_output_res_pool))
|
||||
|
||||
return schema_linking_sql_output_res_pool, schema_linking_sql_prompt_pool, schema_linking_sql_output_task_pool
|
||||
|
||||
async def tasks_run(self, question: str, filter_condition: Mapping[str,str],
|
||||
model_name: str, fields_list: List[str],
|
||||
current_date: str, prior_schema_links: Mapping[str,str], prior_exts: str):
|
||||
logger.info("question: {}".format(question))
|
||||
logger.info("filter_condition: {}".format(filter_condition))
|
||||
logger.info("model_name: {}".format(model_name))
|
||||
logger.info("fields_list: {}".format(fields_list))
|
||||
logger.info("current_date: {}".format(current_date))
|
||||
logger.info("prior_schema_links: {}".format(prior_schema_links))
|
||||
logger.info("prior_exts: {}".format(prior_exts))
|
||||
|
||||
fewshot_example_meta_list = self.get_examples_candidates(question, filter_condition, self.num_examples)
|
||||
fewshot_example_list_combo = self.get_fewshot_example_combos(fewshot_example_meta_list, self.num_fewshots)
|
||||
|
||||
schema_linking_candidate_list, _, schema_linking_prompt_list = await self.generate_schema_linking_tasks(question, model_name, fields_list, current_date, prior_schema_links, prior_exts, fewshot_example_list_combo)
|
||||
logger.debug(f'schema_linking_candidate_list:{schema_linking_candidate_list}')
|
||||
schema_linking_candidate_sorted_list = self.schema_linking_list_str_unify(schema_linking_candidate_list)
|
||||
logger.debug(f'schema_linking_candidate_sorted_list:{schema_linking_candidate_sorted_list}')
|
||||
|
||||
schema_linking_output_max, schema_linking_output_vote_percentage = self.self_consistency_vote(schema_linking_candidate_sorted_list)
|
||||
|
||||
sql_output_candicates, sql_output_prompt_list = await self.generate_sql_tasks(question, model_name, fields_list, schema_linking_candidate_list, current_date, prior_schema_links, prior_exts, fewshot_example_list_combo)
|
||||
logger.debug(f'sql_output_candicates:{sql_output_candicates}')
|
||||
sql_output_max, sql_output_vote_percentage = self.self_consistency_vote(sql_output_candicates)
|
||||
|
||||
resp = dict()
|
||||
resp['question'] = question
|
||||
resp['model'] = model_name
|
||||
resp['fields'] = fields_list
|
||||
resp['priorSchemaLinking'] = prior_schema_links
|
||||
resp['priorExts'] = prior_exts
|
||||
resp['currentDate'] = current_date
|
||||
|
||||
resp['prompt'] = [schema_linking_prompt+'\n\n'+sql_prompt for schema_linking_prompt, sql_prompt in zip(schema_linking_prompt_list, sql_output_prompt_list)]
|
||||
|
||||
resp['schemaLinkStr'] = schema_linking_output_max
|
||||
resp['schemaLinkingWeight'] = schema_linking_output_vote_percentage
|
||||
|
||||
resp['sqlOutput'] = sql_output_max
|
||||
resp['sqlWeight'] = sql_output_vote_percentage
|
||||
|
||||
logger.info("resp: {}".format(resp))
|
||||
|
||||
return resp
|
||||
|
||||
async def tasks_run_shortcut(self, question: str, filter_condition: Mapping[str,str], model_name: str, fields_list: List[str],
|
||||
current_date: str, prior_schema_links: Mapping[str,str], prior_exts: str):
|
||||
logger.info("question: {}".format(question))
|
||||
logger.info("filter_condition: {}".format(filter_condition))
|
||||
logger.info("model_name: {}".format(model_name))
|
||||
logger.info("fields_list: {}".format(fields_list))
|
||||
logger.info("current_date: {}".format(current_date))
|
||||
logger.info("prior_schema_links: {}".format(prior_schema_links))
|
||||
logger.info("prior_exts: {}".format(prior_exts))
|
||||
|
||||
fewshot_example_meta_list = self.get_examples_candidates(question, filter_condition, self.num_examples)
|
||||
fewshot_example_list_combo = self.get_fewshot_example_combos(fewshot_example_meta_list, self.num_fewshots)
|
||||
|
||||
schema_linking_sql_output_candidates, schema_linking_sql_prompt_list, _ = await self.generate_schema_linking_sql_tasks(question, model_name, fields_list, current_date, prior_schema_links, prior_exts, fewshot_example_list_combo)
|
||||
logger.debug(f'schema_linking_sql_output_candidates:{schema_linking_sql_output_candidates}')
|
||||
schema_linking_output_candidate_list = [combo_schema_link_parse(schema_linking_sql_output_candidate) for schema_linking_sql_output_candidate in schema_linking_sql_output_candidates]
|
||||
logger.debug(f'schema_linking_sql_output_candidate_list:{schema_linking_output_candidate_list}')
|
||||
schema_linking_output_candidate_sorted_list = self.schema_linking_list_str_unify(schema_linking_output_candidate_list)
|
||||
|
||||
schema_linking_output_max, schema_linking_output_vote_percentage = self.self_consistency_vote(schema_linking_output_candidate_sorted_list)
|
||||
|
||||
sql_output_candidate_list = [combo_sql_parse(schema_linking_sql_output_candidate) for schema_linking_sql_output_candidate in schema_linking_sql_output_candidates]
|
||||
logger.debug(f'sql_output_candidate_list:{sql_output_candidate_list}')
|
||||
sql_output_max, sql_output_vote_percentage = self.self_consistency_vote(sql_output_candidate_list)
|
||||
|
||||
resp = dict()
|
||||
resp['question'] = question
|
||||
resp['model'] = model_name
|
||||
resp['fields'] = fields_list
|
||||
resp['priorSchemaLinking'] = prior_schema_links
|
||||
resp['priorExts'] = prior_exts
|
||||
resp['currentDate'] = current_date
|
||||
|
||||
resp['prompt'] = schema_linking_sql_prompt_list
|
||||
|
||||
resp['schemaLinkStr'] = schema_linking_output_max
|
||||
resp['schemaLinkingWeight'] = schema_linking_output_vote_percentage
|
||||
|
||||
resp['sqlOutput'] = sql_output_max
|
||||
resp['sqlWeight'] = sql_output_vote_percentage
|
||||
|
||||
logger.info("resp: {}".format(resp))
|
||||
|
||||
return resp
|
||||
|
||||
class Text2DSLAgent(Text2DSLAgentBase):
|
||||
def __init__(self, num_fewshots:int, num_examples:int, num_self_consistency:int,
|
||||
sql_example_prompter:FewShotPromptTemplate2, llm: BaseLLM,) -> None:
|
||||
super().__init__(num_fewshots, num_examples, num_self_consistency, sql_example_prompter, llm)
|
||||
|
||||
def reload_setting(self, sql_example_ids:List[str], sql_example_units: List[Mapping[str, str]], num_examples:int, num_fewshots:int, num_self_consistency:int):
|
||||
self.num_fewshots = num_fewshots
|
||||
self.num_examples = num_examples
|
||||
assert self.num_fewshots <= self.num_examples
|
||||
self.num_self_consistency = num_self_consistency
|
||||
assert self.num_self_consistency >= 1
|
||||
self.sql_example_prompter.reload_few_shot_example(sql_example_ids, sql_example_units)
|
||||
|
||||
def add_examples(self, sql_example_ids:List[str], sql_example_units: List[Mapping[str, str]]):
|
||||
self.sql_example_prompter.add_few_shot_example(sql_example_ids, sql_example_units)
|
||||
|
||||
def update_examples(self, sql_example_ids:List[str], sql_example_units: List[Mapping[str, str]]):
|
||||
self.sql_example_prompter.update_few_shot_example(sql_example_ids, sql_example_units)
|
||||
|
||||
def delete_examples(self, sql_example_ids:List[str]):
|
||||
self.sql_example_prompter.delete_few_shot_example(sql_example_ids)
|
||||
|
||||
def get_examples(self, sql_example_ids: List[str]):
|
||||
return self.sql_example_prompter.get_few_shot_example(sql_example_ids)
|
||||
|
||||
def count_examples(self):
|
||||
return self.sql_example_prompter.count_few_shot_example()
|
||||
|
||||
def generate_schema_linking_prompt(self, question: str, domain_name: str, fields_list: List[str],
|
||||
prior_schema_links: Mapping[str,str], fewshot_example_list:List[Mapping[str, str]])-> str:
|
||||
|
||||
prior_schema_links_str = '['+ ','.join(["""'{}'->{}""".format(k,v) for k,v in prior_schema_links.items()]) + ']'
|
||||
|
||||
instruction = "# 根据数据库的表结构,参考先验信息,找出为每个问题生成SQL查询语句的schema_links"
|
||||
|
||||
schema_linking_example_keys = ["tableName", "fieldsList", "priorSchemaLinks", "question", "analysis", "schemaLinks"]
|
||||
schema_linking_example_template = "Table {tableName}, columns = {fieldsList}, prior_schema_links = {priorSchemaLinks}\n问题:{question}\n分析:{analysis} 所以Schema_links是:\nSchema_links:{schemaLinks}"
|
||||
schema_linking_fewshot_prompt = self.sql_example_prompter.make_few_shot_example_prompt(few_shot_template=schema_linking_example_template,
|
||||
example_keys=schema_linking_example_keys,
|
||||
few_shot_example_meta_list=fewshot_example_list)
|
||||
|
||||
new_case_template = "Table {tableName}, columns = {fieldsList}, prior_schema_links = {priorSchemaLinks}\n问题:{question}\n分析: 让我们一步一步地思考。"
|
||||
new_case_prompt = new_case_template.format(tableName=domain_name, fieldsList=fields_list, priorSchemaLinks=prior_schema_links_str, question=question)
|
||||
|
||||
schema_linking_prompt = instruction + '\n\n' + schema_linking_fewshot_prompt + '\n\n' + new_case_prompt
|
||||
return schema_linking_prompt
|
||||
|
||||
def generate_schema_linking_prompt_pool(self, question: str, domain_name: str, fields_list: List[str],
|
||||
prior_schema_links: Mapping[str,str], fewshot_example_list_pool:List[List[Mapping[str, str]]])-> List[str]:
|
||||
schema_linking_prompt_pool = []
|
||||
for fewshot_example_list in fewshot_example_list_pool:
|
||||
schema_linking_prompt = self.generate_schema_linking_prompt(question, domain_name, fields_list, prior_schema_links, fewshot_example_list)
|
||||
schema_linking_prompt_pool.append(schema_linking_prompt)
|
||||
|
||||
return schema_linking_prompt_pool
|
||||
|
||||
def generate_sql_prompt(self, question: str, domain_name: str,
|
||||
schema_link_str: str, data_date: str,
|
||||
fewshot_example_list:List[Mapping[str, str]])-> str:
|
||||
instruction = "# 根据schema_links为每个问题生成SQL查询语句"
|
||||
sql_example_keys = ["question", "currentDate", "tableName", "schemaLinks", "sql"]
|
||||
sql_example_template = "问题:{question}\nCurrent_date:{currentDate}\nTable {tableName}\nSchema_links:{schemaLinks}\nSQL:{sql}"
|
||||
|
||||
sql_example_fewshot_prompt = self.sql_example_prompter.make_few_shot_example_prompt(few_shot_template=sql_example_template,
|
||||
example_keys=sql_example_keys,
|
||||
few_shot_example_meta_list=fewshot_example_list)
|
||||
|
||||
new_case_template = "问题:{question}\nCurrent_date:{currentDate}\nTable {tableName}\nSchema_links:{schemaLinks}\nSQL:"
|
||||
new_case_prompt = new_case_template.format(question=question, currentDate=data_date, tableName=domain_name, schemaLinks=schema_link_str)
|
||||
|
||||
sql_example_prompt = instruction + '\n\n' + sql_example_fewshot_prompt + '\n\n' + new_case_prompt
|
||||
|
||||
return sql_example_prompt
|
||||
|
||||
def generate_sql_prompt_pool(self, question: str, domain_name: str, data_date: str,
|
||||
schema_link_str_pool: List[str], fewshot_example_list_pool:List[List[Mapping[str, str]]])-> List[str]:
|
||||
sql_prompt_pool = []
|
||||
for schema_link_str, fewshot_example_list in zip(schema_link_str_pool, fewshot_example_list_pool):
|
||||
sql_prompt = self.generate_sql_prompt(question, domain_name, schema_link_str, data_date, fewshot_example_list)
|
||||
sql_prompt_pool.append(sql_prompt)
|
||||
|
||||
return sql_prompt_pool
|
||||
|
||||
def generate_schema_linking_sql_prompt(self, question: str,
|
||||
domain_name: str,
|
||||
data_date : str,
|
||||
fields_list: List[str],
|
||||
prior_schema_links: Mapping[str,str],
|
||||
fewshot_example_list:List[Mapping[str, str]]):
|
||||
|
||||
prior_schema_links_str = '['+ ','.join(["""'{}'->{}""".format(k,v) for k,v in prior_schema_links.items()]) + ']'
|
||||
|
||||
instruction = "# 根据数据库的表结构,参考先验信息,找出为每个问题生成SQL查询语句的schema_links,再根据schema_links为每个问题生成SQL查询语句"
|
||||
|
||||
example_keys = ["tableName", "fieldsList", "priorSchemaLinks", "currentDate", "question", "analysis", "schemaLinks", "sql"]
|
||||
example_template = "Table {tableName}, columns = {fieldsList}, prior_schema_links = {priorSchemaLinks}\nCurrent_date:{currentDate}\n问题:{question}\n分析:{analysis} 所以Schema_links是:\nSchema_links:{schemaLinks}\nSQL:{sql}"
|
||||
fewshot_prompt = self.sql_example_prompter.make_few_shot_example_prompt(few_shot_template=example_template,
|
||||
example_keys=example_keys,
|
||||
few_shot_example_meta_list=fewshot_example_list)
|
||||
|
||||
new_case_template = "Table {tableName}, columns = {fieldsList}, prior_schema_links = {priorSchemaLinks}\nCurrent_date:{currentDate}\n问题:{question}\n分析: 让我们一步一步地思考。"
|
||||
new_case_prompt = new_case_template.format(tableName=domain_name, fieldsList=fields_list, priorSchemaLinks=prior_schema_links_str, currentDate=data_date, question=question)
|
||||
|
||||
prompt = instruction + '\n\n' + fewshot_prompt + '\n\n' + new_case_prompt
|
||||
|
||||
return prompt
|
||||
|
||||
def generate_schema_linking_sql_prompt_pool(self, question: str, domain_name: str, fields_list: List[str], data_date: str,
|
||||
prior_schema_links: Mapping[str,str], fewshot_example_list_pool:List[List[Mapping[str, str]]])-> List[str]:
|
||||
schema_linking_sql_prompt_pool = []
|
||||
for fewshot_example_list in fewshot_example_list_pool:
|
||||
schema_linking_sql_prompt = self.generate_schema_linking_sql_prompt(question, domain_name, data_date, fields_list, prior_schema_links, fewshot_example_list)
|
||||
schema_linking_sql_prompt_pool.append(schema_linking_sql_prompt)
|
||||
|
||||
return schema_linking_sql_prompt_pool
|
||||
|
||||
def self_consistency_vote(self, output_res_pool:List[str]):
|
||||
output_res_counts = Counter(output_res_pool)
|
||||
output_res_max = output_res_counts.most_common(1)[0][0]
|
||||
total_output_num = len(output_res_pool)
|
||||
|
||||
vote_percentage = {k: (v/total_output_num) for k,v in output_res_counts.items()}
|
||||
|
||||
return output_res_max, vote_percentage
|
||||
|
||||
def schema_linking_list_str_unify(self, schema_linking_list: List[str])-> List[str]:
|
||||
schema_linking_list_unify = []
|
||||
for schema_linking_str in schema_linking_list:
|
||||
schema_linking_str_unify = ','.join(sorted([item.strip() for item in schema_linking_str.strip('[]').split(',')]))
|
||||
schema_linking_str_unify = f'[{schema_linking_str_unify}]'
|
||||
schema_linking_list_unify.append(schema_linking_str_unify)
|
||||
|
||||
return schema_linking_list_unify
|
||||
|
||||
async def generate_schema_linking_tasks(self, question: str, domain_name: str,
|
||||
fields_list: List[str], prior_schema_links: Mapping[str,str],
|
||||
fewshot_example_list_combo:List[List[Mapping[str, str]]]):
|
||||
|
||||
schema_linking_prompt_pool = self.generate_schema_linking_prompt_pool(question, domain_name,
|
||||
fields_list, prior_schema_links,
|
||||
fewshot_example_list_combo)
|
||||
schema_linking_output_task_pool = [self.llm._call_async(schema_linking_prompt) for schema_linking_prompt in schema_linking_prompt_pool]
|
||||
schema_linking_output_pool = await asyncio.gather(*schema_linking_output_task_pool)
|
||||
logger.debug(f'schema_linking_output_pool:{schema_linking_output_pool}')
|
||||
|
||||
schema_linking_str_pool = [schema_link_parse(schema_linking_output) for schema_linking_output in schema_linking_output_pool]
|
||||
|
||||
return schema_linking_str_pool
|
||||
|
||||
async def generate_sql_tasks(self, question: str, domain_name: str, data_date: str,
|
||||
schema_link_str_pool: List[str], fewshot_example_list_combo:List[List[Mapping[str, str]]]):
|
||||
|
||||
sql_prompt_pool = self.generate_sql_prompt_pool(question, domain_name, schema_link_str_pool, data_date, fewshot_example_list_combo)
|
||||
sql_output_task_pool = [self.llm._call_async(sql_prompt) for sql_prompt in sql_prompt_pool]
|
||||
sql_output_res_pool = await asyncio.gather(*sql_output_task_pool)
|
||||
logger.debug(f'sql_output_res_pool:{sql_output_res_pool}')
|
||||
|
||||
return sql_output_res_pool
|
||||
|
||||
async def generate_schema_linking_sql_tasks(self, question: str, domain_name: str, fields_list: List[str], data_date: str,
|
||||
prior_schema_links: Mapping[str,str], fewshot_example_list_combo:List[List[Mapping[str, str]]]):
|
||||
schema_linking_sql_prompt_pool = self.generate_schema_linking_sql_prompt_pool(question, domain_name, fields_list, data_date, prior_schema_links, fewshot_example_list_combo)
|
||||
schema_linking_sql_output_task_pool = [self.llm._call_async(schema_linking_sql_prompt) for schema_linking_sql_prompt in schema_linking_sql_prompt_pool]
|
||||
schema_linking_sql_output_res_pool = await asyncio.gather(*schema_linking_sql_output_task_pool)
|
||||
logger.debug(f'schema_linking_sql_output_res_pool:{schema_linking_sql_output_res_pool}')
|
||||
|
||||
return schema_linking_sql_output_res_pool
|
||||
|
||||
async def tasks_run(self, question: str, filter_condition: Mapping[str, str], domain_name: str, fields_list: List[str], prior_schema_links: Mapping[str,str], data_date: str, prior_exts: str):
|
||||
logger.info("question: {}".format(question))
|
||||
logger.info("domain_name: {}".format(domain_name))
|
||||
logger.info("fields_list: {}".format(fields_list))
|
||||
logger.info("current_date: {}".format(data_date))
|
||||
logger.info("prior_schema_links: {}".format(prior_schema_links))
|
||||
logger.info("prior_exts: {}".format(prior_exts))
|
||||
|
||||
if prior_exts != '':
|
||||
question = question + ' 备注:'+prior_exts
|
||||
logger.info("question_prior_exts: {}".format(question))
|
||||
|
||||
fewshot_example_meta_list = self.get_examples_candidates(question, filter_condition, self.num_examples)
|
||||
fewshot_example_list_combo = self.get_fewshot_example_combos(fewshot_example_meta_list, self.num_fewshots)
|
||||
|
||||
schema_linking_candidate_list = await self.generate_schema_linking_tasks(question, domain_name, fields_list, prior_schema_links, fewshot_example_list_combo)
|
||||
logger.debug(f'schema_linking_candidate_list:{schema_linking_candidate_list}')
|
||||
schema_linking_candidate_sorted_list = self.schema_linking_list_str_unify(schema_linking_candidate_list)
|
||||
logger.debug(f'schema_linking_candidate_sorted_list:{schema_linking_candidate_sorted_list}')
|
||||
|
||||
schema_linking_output_max, schema_linking_output_vote_percentage = self.self_consistency_vote(schema_linking_candidate_sorted_list)
|
||||
|
||||
sql_output_candicates = await self.generate_sql_tasks(question, domain_name, data_date, schema_linking_candidate_list,fewshot_example_list_combo)
|
||||
logger.debug(f'sql_output_candicates:{sql_output_candicates}')
|
||||
sql_output_max, sql_output_vote_percentage = self.self_consistency_vote(sql_output_candicates)
|
||||
|
||||
resp = dict()
|
||||
resp['question'] = question
|
||||
resp['model'] = domain_name
|
||||
resp['fields'] = fields_list
|
||||
resp['priorSchemaLinking'] = prior_schema_links
|
||||
resp['dataDate'] = data_date
|
||||
|
||||
resp['schemaLinkStr'] = schema_linking_output_max
|
||||
resp['schemaLinkingWeight'] = schema_linking_output_vote_percentage
|
||||
|
||||
resp['sqlOutput'] = sql_output_max
|
||||
resp['sqlWeight'] = sql_output_vote_percentage
|
||||
|
||||
logger.info("resp: {}".format(resp))
|
||||
|
||||
return resp
|
||||
|
||||
async def tasks_run_shortcut(self, question: str, filter_condition: Mapping[str, str], domain_name: str, fields_list: List[str], prior_schema_links: Mapping[str,str], data_date: str, prior_exts: str):
|
||||
logger.info("question: {}".format(question))
|
||||
logger.info("domain_name: {}".format(domain_name))
|
||||
logger.info("fields_list: {}".format(fields_list))
|
||||
logger.info("current_date: {}".format(data_date))
|
||||
logger.info("prior_schema_links: {}".format(prior_schema_links))
|
||||
logger.info("prior_exts: {}".format(prior_exts))
|
||||
|
||||
if prior_exts != '':
|
||||
question = question + ' 备注:'+prior_exts
|
||||
logger.info("question_prior_exts: {}".format(question))
|
||||
|
||||
fewshot_example_meta_list = self.get_examples_candidates(question, filter_condition, self.num_examples)
|
||||
fewshot_example_list_combo = self.get_fewshot_example_combos(fewshot_example_meta_list, self.num_fewshots)
|
||||
|
||||
schema_linking_sql_output_candidates = await self.generate_schema_linking_sql_tasks(question, domain_name, fields_list, data_date, prior_schema_links, fewshot_example_list_combo)
|
||||
logger.debug(f'schema_linking_sql_output_candidates:{schema_linking_sql_output_candidates}')
|
||||
schema_linking_output_candidate_list = [combo_schema_link_parse(schema_linking_sql_output_candidate) for schema_linking_sql_output_candidate in schema_linking_sql_output_candidates]
|
||||
logger.debug(f'schema_linking_sql_output_candidate_list:{schema_linking_output_candidate_list}')
|
||||
schema_linking_output_candidate_sorted_list = self.schema_linking_list_str_unify(schema_linking_output_candidate_list)
|
||||
|
||||
schema_linking_output_max, schema_linking_output_vote_percentage = self.self_consistency_vote(schema_linking_output_candidate_sorted_list)
|
||||
|
||||
sql_output_candidate_list = [combo_sql_parse(schema_linking_sql_output_candidate) for schema_linking_sql_output_candidate in schema_linking_sql_output_candidates]
|
||||
logger.debug(f'sql_output_candidate_list:{sql_output_candidate_list}')
|
||||
sql_output_max, sql_output_vote_percentage = self.self_consistency_vote(sql_output_candidate_list)
|
||||
|
||||
resp = dict()
|
||||
resp['question'] = question
|
||||
resp['model'] = domain_name
|
||||
resp['fields'] = fields_list
|
||||
resp['priorSchemaLinking'] = prior_schema_links
|
||||
resp['dataDate'] = data_date
|
||||
|
||||
resp['schemaLinkStr'] = schema_linking_output_max
|
||||
resp['schemaLinkingWeight'] = schema_linking_output_vote_percentage
|
||||
|
||||
resp['sqlOutput'] = sql_output_max
|
||||
resp['sqlWeight'] = sql_output_vote_percentage
|
||||
|
||||
logger.info("resp: {}".format(resp))
|
||||
|
||||
return resp
|
||||
|
||||
async def async_query2sql(self, question: str, filter_condition: Mapping[str,str],
|
||||
model_name: str, fields_list: List[str],
|
||||
data_date: str, prior_schema_links: Mapping[str,str], prior_exts: str):
|
||||
logger.info("question: {}".format(question))
|
||||
logger.info("model_name: {}".format(model_name))
|
||||
logger.info("fields_list: {}".format(fields_list))
|
||||
logger.info("data_date: {}".format(data_date))
|
||||
logger.info("prior_schema_links: {}".format(prior_schema_links))
|
||||
logger.info("prior_exts: {}".format(prior_exts))
|
||||
|
||||
if prior_exts != '':
|
||||
question = question + ' 备注:'+prior_exts
|
||||
logger.info("question_prior_exts: {}".format(question))
|
||||
|
||||
fewshot_example_meta_list = self.get_examples_candidates(question, filter_condition, self.num_examples)
|
||||
schema_linking_prompt = self.generate_schema_linking_prompt(question, model_name, fields_list, prior_schema_links, fewshot_example_meta_list)
|
||||
logger.debug("schema_linking_prompt->{}".format(schema_linking_prompt))
|
||||
schema_link_output = await self.llm._call_async(schema_linking_prompt)
|
||||
|
||||
schema_link_str = schema_link_parse(schema_link_output)
|
||||
|
||||
sql_prompt = self.generate_sql_prompt(question, model_name, schema_link_str, data_date, fewshot_example_meta_list)
|
||||
logger.debug("sql_prompt->{}".format(sql_prompt))
|
||||
sql_output = await self.llm._call_async(sql_prompt)
|
||||
|
||||
resp = dict()
|
||||
resp['question'] = question
|
||||
resp['model'] = model_name
|
||||
resp['fields'] = fields_list
|
||||
resp['priorSchemaLinking'] = prior_schema_links
|
||||
resp['dataDate'] = data_date
|
||||
|
||||
resp['schemaLinkingOutput'] = schema_link_output
|
||||
resp['schemaLinkStr'] = schema_link_str
|
||||
|
||||
resp['sqlOutput'] = sql_output
|
||||
|
||||
logger.info("resp: {}".format(resp))
|
||||
|
||||
return resp
|
||||
|
||||
async def async_query2sql_shortcut(self, question: str, filter_condition: Mapping[str,str],
|
||||
model_name: str, fields_list: List[str],
|
||||
data_date: str, prior_schema_links: Mapping[str,str], prior_exts: str):
|
||||
|
||||
logger.info("question: {}".format(question))
|
||||
logger.info("model_name: {}".format(model_name))
|
||||
logger.info("fields_list: {}".format(fields_list))
|
||||
logger.info("data_date: {}".format(data_date))
|
||||
logger.info("prior_schema_links: {}".format(prior_schema_links))
|
||||
logger.info("prior_exts: {}".format(prior_exts))
|
||||
|
||||
if prior_exts != '':
|
||||
question = question + ' 备注:'+prior_exts
|
||||
logger.info("question_prior_exts: {}".format(question))
|
||||
|
||||
fewshot_example_meta_list = self.get_examples_candidates(question, filter_condition, self.num_examples)
|
||||
schema_linking_sql_shortcut_prompt = self.generate_schema_linking_sql_prompt(question, model_name, data_date, fields_list, prior_schema_links, fewshot_example_meta_list)
|
||||
logger.debug("schema_linking_sql_shortcut_prompt->{}".format(schema_linking_sql_shortcut_prompt))
|
||||
schema_linking_sql_shortcut_output = await self.llm._call_async(schema_linking_sql_shortcut_prompt)
|
||||
|
||||
schema_linking_str = combo_schema_link_parse(schema_linking_sql_shortcut_output)
|
||||
sql_str = combo_sql_parse(schema_linking_sql_shortcut_output)
|
||||
|
||||
resp = dict()
|
||||
resp['question'] = question
|
||||
resp['model'] = model_name
|
||||
resp['fields'] = fields_list
|
||||
resp['priorSchemaLinking'] = prior_schema_links
|
||||
resp['dataDate'] = data_date
|
||||
|
||||
resp['schemaLinkingComboOutput'] = schema_linking_sql_shortcut_output
|
||||
resp['schemaLinkStr'] = schema_linking_str
|
||||
resp['sqlOutput'] = sql_str
|
||||
|
||||
logger.info("resp: {}".format(resp))
|
||||
|
||||
return resp
|
||||
|
||||
class SqlModeEnum(Enum):
|
||||
VALUE5 = '1_pass_auto_cot'
|
||||
VALUE6 = '1_pass_auto_cot_self_consistency'
|
||||
VALUE7 = '2_pass_auto_cot'
|
||||
VALUE8 = '2_pass_auto_cot_self_consistency'
|
||||
|
||||
class Text2DSLAgentWrapper(object):
|
||||
def __init__(self, sql_agent_act:Text2DSLAgentAutoCoT):
|
||||
self.sql_agent_act = sql_agent_act
|
||||
|
||||
async def async_query2sql(self, question: str, filter_condition: Mapping[str,str],
|
||||
model_name: str, fields_list: List[str],
|
||||
data_date: str, prior_schema_links: Mapping[str,str], prior_exts: str, sql_generation_mode: str):
|
||||
|
||||
if sql_generation_mode not in (sql_mode.value for sql_mode in SqlModeEnum):
|
||||
raise ValueError(f"sql_generation_mode: {sql_generation_mode} is not in SqlModeEnum")
|
||||
|
||||
if sql_generation_mode == '1_pass_auto_cot':
|
||||
logger.info(f"sql wrapper: {sql_generation_mode}")
|
||||
resp = await self.sql_agent_act.async_query2sql_shortcut(question=question, filter_condition=filter_condition, model_name=model_name, fields_list=fields_list, current_date=data_date, prior_schema_links=prior_schema_links, prior_exts=prior_exts)
|
||||
return resp
|
||||
elif sql_generation_mode == '1_pass_auto_cot_self_consistency':
|
||||
logger.info(f"sql wrapper: {sql_generation_mode}")
|
||||
resp = await self.sql_agent_act.tasks_run_shortcut(question=question, filter_condition=filter_condition, model_name=model_name, fields_list=fields_list, current_date=data_date, prior_schema_links=prior_schema_links, prior_exts=prior_exts)
|
||||
return resp
|
||||
elif sql_generation_mode == '2_pass_auto_cot':
|
||||
logger.info(f"sql wrapper: {sql_generation_mode}")
|
||||
resp = await self.sql_agent_act.async_query2sql(question=question, filter_condition=filter_condition, model_name=model_name, fields_list=fields_list, current_date=data_date, prior_schema_links=prior_schema_links, prior_exts=prior_exts)
|
||||
return resp
|
||||
elif sql_generation_mode == '2_pass_auto_cot_self_consistency':
|
||||
logger.info(f"sql wrapper: {sql_generation_mode}")
|
||||
resp = await self.sql_agent_act.tasks_run(question=question, filter_condition=filter_condition, model_name=model_name, fields_list=fields_list, current_date=data_date, prior_schema_links=prior_schema_links, prior_exts=prior_exts)
|
||||
return resp
|
||||
else:
|
||||
raise ValueError(f'sql_generation_mode:{sql_generation_mode} is not in SqlModeEnum')
|
||||
|
||||
def update_configs(self, sql_example_ids:List[str], sql_example_units: List[Mapping[str, str]],
|
||||
num_examples: int, num_fewshots: int, num_self_consistency: int):
|
||||
self.sql_agent_act.reload_setting(sql_example_ids=sql_example_ids, sql_example_units=sql_example_units, num_examples=num_examples, num_fewshots=num_fewshots, num_self_consistency=num_self_consistency)
|
||||
|
||||
def add_examples(self, sql_example_ids:List[str], sql_example_units: List[Mapping[str, str]]):
|
||||
self.sql_agent_act.add_examples(sql_example_ids=sql_example_ids, sql_example_units=sql_example_units)
|
||||
|
||||
def update_examples(self, sql_example_ids:List[str], sql_example_units: List[Mapping[str, str]]):
|
||||
self.sql_agent_act.update_examples(sql_example_ids=sql_example_ids, sql_example_units=sql_example_units)
|
||||
|
||||
def delete_examples(self, sql_example_ids:List[str]):
|
||||
self.sql_agent_act.delete_examples(sql_example_ids=sql_example_ids)
|
||||
|
||||
def get_examples(self, sql_example_ids: List[str]):
|
||||
sql_agent_act_examples = self.sql_agent_act.get_examples(sql_example_ids=sql_example_ids)
|
||||
|
||||
return sql_agent_act_examples
|
||||
|
||||
def count_examples(self):
|
||||
sql_agent_examples_act_cnt = self.sql_agent_act.count_examples()
|
||||
|
||||
return sql_agent_examples_act_cnt
|
||||
Reference in New Issue
Block a user