mirror of
https://github.com/tencentmusic/supersonic.git
synced 2025-12-11 03:58:14 +00:00
(improvement)(common|headless|chat|auth) 鉴权优化与召回优化
1 修复生成的用户token 一生成就失效的问题 2 如果用户设置的token ,需校验是否数据库存在,因为用户可设置一年的token 有泄露风险 3 结果解析优化, 去除不可以解析的情况,解析问题需要改写后的问, 4 召回样例,用相似度,保住至少有一个样例是高相似度的 5 数据集召回,填加完全匹配格式筛选逻辑
This commit is contained in:
@@ -66,7 +66,7 @@ public class SemanticParseInfo implements Serializable {
|
||||
DataSetMatchResult mr2 = getDataSetMatchResult(o2.getElementMatches());
|
||||
|
||||
double difference = mr1.getMaxDatesetSimilarity() - mr2.getMaxDatesetSimilarity();
|
||||
if (Math.abs(difference) < 0.0005) { // 看完全匹配的个数,实践证明,可以用户输入规范后,该逻辑具有优势
|
||||
if (Math.abs(difference) < 0.0005) { // 看完全匹配的个数,实践证明,可以用户输入规范后,该逻辑具有优势
|
||||
if (!o1.getDataSetId().equals(o2.getDataSetId())) {
|
||||
List<SchemaElementMatch> elementMatches1 = o1.getElementMatches().stream()
|
||||
.filter(e -> e.getSimilarity() == 1).collect(Collectors.toList());
|
||||
|
||||
@@ -49,7 +49,7 @@ public class PromptHelper {
|
||||
// use random collection of exemplars for each self-consistency inference
|
||||
for (int i = 0; i < selfConsistencyNumber; i++) {
|
||||
List<Text2SQLExemplar> shuffledList = new ArrayList<>(exemplars);
|
||||
List<Text2SQLExemplar> same = shuffledList.stream() // 相似度极高的话,先找出来
|
||||
List<Text2SQLExemplar> same = shuffledList.stream() // 相似度极高的话,先找出来
|
||||
.filter(e -> e.getSimilarity() > 0.989).collect(Collectors.toList());
|
||||
List<Text2SQLExemplar> noSame = shuffledList.stream()
|
||||
.filter(e -> e.getSimilarity() <= 0.989).collect(Collectors.toList());
|
||||
|
||||
Reference in New Issue
Block a user